Artificial Intelligence 2

Pattern recognition

•Techniques that classify data (patterns) in an attempt to understand the data and take actions based on that understanding

- •A priori knowledge: Previous knowledge that does not get modified with new experiences
- •Statistical information extracted from the patterns
- •Example: Face recognition system understanding pixels

Natural language processing

- Branch of AI concerned with interactions and human languages
- •Natural Language: Set of languages that humans use to communicate
- •This problem is of strong equivalence
 - •Ability to comprehend languages, extensive knowledge about the outside world and being able to manipulate it
 - •Voice recognition: recognizing human words
 •Natural language comprehension: interpreting human communication
 - •Voice synthesis: recreating human speech

Natural language comprehension

•Most challenging aspect!

- Natural language is ambiguous multiple interpretations
- •Understanding requires real world knowledge and syntactic structure of sentences
- •Examples:

Time flies like an arrow

The pen is in the box

The box is in the pen

George: My aunt is in the hospital. I went to see her today and, took her flowers.

Computer: George, that's terrible!

Natural language comprehension

•Lexical ambiguity: Words have multiple meaning Time <u>flies</u> like an arrow

•Syntactic ambiguity: Sentences have more than one meaning

The pen is in the box
The box is in the pen
George: My aunt is in the hospital. I went to see her today and, took her flowers.

Computer: George, that's terrible!

 Referential ambiguity: Ambiguity created when pronouns could be applied to multiple object

Ally hit Georgia and then <u>she</u> started yelling

Who started yelling? Ally, Georgia or someone else?

Natural language comprehension

•Systems must have these common components:

- •Lexicon: vocabulary, word and expressions
- •Parser/Syntax: Text analyzer, inbuilt grammar rules, to form an internal representation of the text
- •Semantic theory: study of meaning and relationships between words, phrases
- •Logical inference: Process of drawing conclusions based on rules applied depending on observations or statistical models

Neurons

•Brain is made up of neurons

•An electrically excitable cell that processes and transmits information by electrical and chemical signaling

- •An excited neuron conducts a strong signal and vice versa
- •A series of excited neurons form a strong pathway
- •A neuron receives multiple inputs from other neurons

•Assigns a weight on each signal based on its strength

If enough signals are weak-> inhibited state or vice versa

Perceptrons

A model of a neuron. Some inputs multiplied by some weights to output a value 1 or 0 x1*w1 + x2*w2 + ... x7*w7 >= 0 then y = 1 else -1

Artificial Neural Networks

•A mathematical model inspired by the structure and/or functional aspects of biological neural networks

Artificial neural networks

•**Training**: The process of adjusting the weights and threshold values

•Series of comparisons to desired results

Artificial neural networks

•You can train a neural network to do anything

- •No inherent meaning to the weights: Making it versatile •Applications:
 - Pattern recognition
 - Classification
 - Modeling how are brain works