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Abstract. Using gray-scale texture features has recently become a new trend in
supervised machine learning crater detection algorithms. To provide better classi-
fication of craters in planetary images, feature subset selection is used to reduce
irrelevant and redundant features. Feature selection is known to be NP-hard. To
provide an efficient suboptimal solution, three genetic algorithms are proposed to
use greedy selection, weighted random selection, and simulated annealing to dis-
tinguish discriminate features from indiscriminate features. A significant increase
in the classification ability of a Bayesian classifier in crater detection using image
texture features.
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1 Introduction

Impact craters are structures formed by collisions of meteoroids with the planetary sur-
face. The importance of impact craters stems from the wealth of information that detailed
analysis of their distributions and morphology can bring forth. Crater counting is the only
technique for establishing relative chronology of different planetary surfaces. However,
crater detection from planetary images is a difficult problem because of the complex geo-
logical surface structure of remote planets. If an acceptable solution is found it will enable
many studies including determining the geologically active regions of a planet, relatively
dating sections of a planet, and determining both landing and exploration sites for inter-
planetary robots. The challenge currently is to achieve an acceptable level of accuracy as
required by planetary domain scientists [11] [5] [10] [6] [12].

The state of the art method of crater detection involves utilizing the texture and
contrast of the crater image [3]. This is achieved by extracting numerical features from
an image, each representing a particular texture or contrast, and then applying machine
learning to decide if potential crater images are in fact craters. Haar features, a gray-
scale image texture features, are especially useful because of their ability to be calculated
efficiently using a data structure called integral images [13].

The challenge in using Haar features is that the number of Haar features can easily
be tens of thousands. Many Haar features are redundant or even irrelevant. The curse
of dimensionality is inevitable if we do not select subsets of features that are useful to
build a good classifier. All features generated from the image can be broken down into
discriminate features and indiscriminate features. Discriminate features contain informa-
tion that is useful during classification. Indiscriminate features provide no information to
the classifier or misguiding information.



The goal of feature selection is to select the optimal subset of features for some classi-
fier. Feature subset selection is known to be NP-hard. Exhaustive search is the only way
to find the optimal subset of a set of features. To find, for certain, the optimal solution all
permutations must be considered. The search space is 2f where f is the number of fea-
tures. For an example with only 58 features it would take 91,336,645.5 years to compute
all classifiers if a classifier took 0.10 seconds to create and evaluate.

Three algorithms are presented in this paper, using approaches of highest fitness selec-
tion, weighted random selection, and simulated annealing, to select discriminate features
that a classifier will use to classify images. These algorithms are given a set of features
and return a suboptimal subset. The algorithms presented in this paper aim to reduce the
search space automatically. They will automatically create a relevant subset of features
utilizing a wrapped classifier fitness function. A significant increase in the classification
ability of a Bayesian classifier in crater detection using image texture features.

2 Related Work

There have been many methods used to automatically detect craters. R. Honda [4] built
a SOM using Hough transforms to extract geometric features. They then perform best
parameter selection to reduce duplicate detections using a genetic algorithm based on the
center location and radius of the detected crater. In this work we use genetic algorithms
to choose the best features to build a classifier with which is different from R. Honda’s
method.

This paper uses standard classification methods to determine the probability that an
image is in fact a crater as inspired by W. Ding [3] and L. Banderia [1]. Y. Cheng [2].
They used the concept of a confidence evaluation to detect craters and J. Kim [5] used a
fitness check to determine if the candidate was a crater or not.

This work utilizes Haar features to perform candidate image classification. Haar fea-
tures were used by W. Ding [3] L. Banderia [1], and S. Liu [7] and are the state of the art
in crater detection because of their adaptive and discriminative ability. They are used in
this work as crater features.

3 Genetically Enhanced Feature Selection

This section presents three genetic algorithms used for feature subset selection. Each
algorithm builds upon the one before it in an attempt to achieve better results. The first
algorithm is explained in detail and then only modifications are explained for the next
two algorithms. First the main concepts of genetic algorithms, genetic representation, and
fitness are discussed. For each algorithm there is an initial plan, explanation of steps, and
a complexity analysis.

The three proposed methods of genetically enhanced feature selection are shown in
Algorithms 3, 4, and 5. These vary in the way feature subsets are chosen to be crossed
over. The goal is to pick the best feature subsets so that when they are combined will
generate a feature subset with a higher fitness score than either of the original. The first
algorithm attempts to choose the best two feature subsets and use them as parents while
the later algorithms attempt to introduce controlled randomness. Controlled randomness
is introduced by randomly selecting from feature subsets that are weighted based on their
fitness score. Later simulated annealing is used to introduce more randomness at the
beginning of the algorithm.



3.1 Genetic Representation

In these algorithms the genetic representation is a subset of features that are used in
building a classifier. This is referred to in this work as a feature subset but is also called an
individual or chromosome. The representation is treated as a subset and as a vector. This
is achieved using the concept of a bitvector to set features as on or off. Each index of the
bitvector represents one feature. The contents of a subset are the on features represented
by the bitvector. The magnitude of the subset is the sum of all possible features.

3.2 Wrapped Classifier Fitness Function

The fitness function used in the following algorithms is modeled as an evaluation func-
tion in the F1 search space. It can be said that the fitness function is wrapped around a
classifier. The F1 fitness metric, fitness = F1 = 2
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, takes into account two

important attributes of a classifier, precision and recall. This allows us to compare two
classifiers using one value. Using the F1 measure also allows the priority queue datas-
tructure to be used. The calculation for precision, Precision = truepositives

truepositives+falsepositives ,
takes into account how generously the classifier predicted something was a positive ex-
ample. This metric fails to describe the situation when the classifier has ignored many
positive examples. Recall, Recall = truepositives

truepositives+falsenegatives , fixes this problem by de-
scribing the ability of the classifier to predict all the positive examples correctly. It can
be thought of as describing the coverage of classifier. Recall by itself cannot describe
the classifier because it does not take into account the case where the classifier marked
everything as a positive instance.

3.3 Random Crossover

Instead of splitting the feature subset somewhere in the middle so the order is preserved
at a loss for feature equality [9], we use random crossover to ensure that element of the
feature subset has an equal chance of being preserved. This change is due to the absence
of order that is involved with features.

The random crossover used, as shown in Algorithm 1, is the process of merging two
parent subsets to make a new child subset. This resulting child subset is composed of
the parent subsets. This process is used to simulate the mixing of chromosomes during
natures genetic process. If a feature is enabled in both parents then it will be enabled in
the child. If it varies in the parents then there is a 50% chance it will be preserved in
the child. If a feature is turned off in both parents it will be turned off in the child. If
this method was used exclusively in the algorithms then the children would converge to
a local or global maximum fitness. This convergence is not desired because we want to
avoid local maximums so the feature subsets are also mutated.

3.4 Mutation

Mutation is used to avoid the convergence of algorithms at a local maximum. As shown
in Algorithm 2; mutation involves randomly flipping a percentage of bits in the feature
subset to enable or disable features. Mutation as described here takes a percentage as
an argument and mutates that percentage of the feature subset. This is used to simulate
natures genetic mutations.



Algorithm 1: Preform Random Crossover f1
⊗
f2

Input: Feature Subset Vector f1
Feature Subset Vector f2

Output: Feature Subset Vector f3
1 for |f1| do
2 if 0.5 < Random(0, 1) then
3 f3i = f1i

4 else
5 f3i = f2i

Algorithm 2: Preform Random Mutation M(f1, δ)

Input: Feature subset f1
Percentage to mutate δ

Output: Feature subset vector f2
1 for δ of |f3| do
2 r = Random(0, |f3|) // random index
3 f3r = ¬f3r

3.5 Highest Fitness (Greedy) Selection

Also called GHF (Genetic Highest Fitness), the initial plan for this algorithm was to
greedily select the best two feature subsets. This would then concentrate the randomness
to the crossover and mutation phases. The expectation is that combining good feature
subsets will produce better feature subsets.

Algorithm 3: Highest Fitness (Greedy) Selection (GHF)

Input: Features Γ
Iterations I
Inital random subsets s
Percentage to mutate m
Maximum size of Υ size

Output: Feature subset Γ ′

1 Add a full instance of Γ to Υ
2 Add s random subsets of Γ to Υ
3 for each i in I do
4 {f1|f ∈ Υ, fitness(f1) ≥ fitness(f)}
5 {f2|f ∈ (Υ ∩ ¬{f1}), fitness(f2) ≥ fitness(f)}
6 f3 = f1

⊗
f2 // crossover subset

7 f3′ = M(f3,m) // mutate subset m percent
8 {Υ |f ∈ Υ ∩ {f3′}}
9 {Γ ′|Γ ′ ∈ Υ, f ∈ Υ, fitness(Γ ′) ≥ fitness(f)}

The GHF steps are explained now. Step 1: seed the algorithm with a subset that
contains all features. Step 2: seed the algorithm with an initial set of feature subsets.
Step 3: we loop some number of times to simulate many generations of evolution. Step



4: we select a parent from the set of feature subsets that has the best fitness score. Step
5: remove the already selected feature subset and then select the feature subset with the
highest fitness score. Step 6: randomly crossover f1 and f2 to create f3. Step 7: mutate
m percent of this new feature subset. Step 8: define upsilon to contain the mutated f3.
Step 9: define Gamma prime to be a feature subset that has the highest fitness score in
upsilon.

3.6 Weighted Random Selection

Algorithm 4: Weighted Random Selection

Input: Features Γ
Iterations I
Inital random subsets s
Percentage to mutate m
Maximum size of Υ size

Output: Feature subset Γ ′

1 Add a full instance of Γ to Υ
2 Add s random subsets of Γ to Υ
3 for each i in I do
4 f1 = GetWeightedSubset(Υ )
5 f2 = GetWeightedSubset(Υ ∩ ¬{f1})
6 f3 = f1

⊗
f2 // crossover subset

7 f3′ = M(f3,m) // mutate subset m percent
8 {Υ |f ∈ Υ ∩ {f3′}}
9 {Γ ′|Γ ′ ∈ Υ, f ∈ Υ, fitness(Γ ′) ≥ fitness(f)}

10 GetWeightedSubset :
Input: Current set of feature subsets Υ
Output: Feature subset f2

11 fn ∈ Υ
12 {f̂n|

∑
n fn = 1}

13 r = Random(0, 1)

14 foreach f̂n do

15 r = r − f̂n
16 if r < 0 then
17 returnf

Also called GWR (Genetic Weighted Random), the initial plan for this algorithm was
to increase the chance that a feature subset with better complementing features would be
chosen. This is implemented using a weighting method. The feature subsets are selected
at random but weighted based on their fitness values. To explain this sample data is
shown in Figure 2. The sample data points are the values 0.95, 0.90, 0.80 and 0.70. To the
right of the image those values have been scaled to 0.284, 0.269, 0.239, and 0.209. This
allows a random number between 0 and 1 to select a feature. Figure 1 shows the result of
the highest fitness score removed. The fitness values are normalized again to handle this
change so that a new random number between 0 and 1 will select a feature subset.



Algorithm 4 has it’s feature subset selection method modified. Steps 3 and 4 are
changed now to call a GetWeightedSubset method. In GetWeightedSubset Step 10: defines
a sub routine. Step 11: defines that fn is a element of upsilon. Step 12: produces a
normalized version of the feature subset and a fitness value to be used below only. Step
13: generates an r between 0 and 1 that we will subtract from to pick a feature subset.
Step 14: loops for each feature subset. Step 15: subtracts the current feature subsets
normalized fitness value from r. Step 16+17: if r has gone below 0 then we select that
feature subset.

Fig. 1. Left: Sample values weighted based on fitness score, Right: Sample values weighted based
on fitness score after one feature subset is removed

3.7 Weighted Random Selection with Simulated Annealing

Also called GWRSA (Genetic Weighted Random w/ Simulated Annealing), the idea for
this algorithm is to initially weight all feature subsets the same during feature subset
selection and then gradually weight them by their fitness score as the number of iterations
increases.

As shown in Algorithm 5 the GetWeightedSubset method has been modified to take
the current iteration as an argument. Steps 1 and 2 use this iteration value to drive the
weighting to be close to equal at the beginning and properly weighted when iterations
are at the end.

Algorithm 5: GetWeightedSubset w/ Simulated Annealing

Input: Current set of feature subsets Υ
Input: Current iteration i
Output: Feature subset f2

1 annealing = I − i
2 {f̂n|

∑
n fn+ annealing = 1}

3 r = Random(0, 1)

4 foreach f̂n do

5 r = r − f̂n
6 if r < 0 then
7 returnf



3.8 Complexity

GHF is the most efficient algorithm out of the three. GWR and GWRSA have an added
penalty due to the way they use randomness to avoid local maximums. The complexity of
GHF is O(icΓ ) where i is the number of iterations, c is the complexity of the classifier used
to calculate the fitness score, and Γ is the number of features used. In GWR the change
from selecting the feature subset with the highest fitness score to weighting and selecting
causes the algorithm to increase in complexity. All the fitness values must now be added
to create a normalization term. This increases the complexity to O(icΓ 2). A limit on the
number of feature subsets in Γ would reduce the complexity but that method is not used
in this algorithm. The complexity of GWRSA does not increase the complexity of GWR
because the only change is an addition during the computation of the normalization term.

4 Experimental Results

This section analyses the advantages of using these feature selection algorithms. This
is done by creating a super set of features that contain discriminate and indiscriminate
features. The goal of the feature selection algorithm will be to remove the indiscriminate
features and return a feature subset with only discriminate ones.

A challenge of experimenting with these algorithms is finding their optimal parameters.
This section will also analyze the mutation rate, number of iterations, maximum number
of feature subsets accumulated, and the number of feature subsets generated for the initial
pool. This section will also compare this algorithm to a variety of other algorithms applied
to the same dataset.

In these experiments the training set consists of 166 positive examples of craters and
343 negative examples of ground without cratering are used from the HRSC h0905 0000
nadir panchromatic image. This training set used is selected to simulate crater detection
and was inspired by the ones used by W. Ding [3] and L. Banderia [1]. Positive examples
contain craters centered and cropped as shown in Figure 2. This training set provides the
ability to analyze the algorithms without dealing with the size and complexity of applied
crater detection.

To evaluate the proposed algorithms Haar features are used in combination with a
Bayesian classifier. Haar features have a proven ability to detect craters [3]. A Bayesian
classifier is used because of it’s naive use of all features. Haar features were first proposed
by Papageorgiou [8], then applied to face detection by Viola and Jones [13], and then
applied to crater detection by W. Ding [3]. Haar features are described using feature
masks that specify white and black regions. The masks are overlaid on the crater image
and the sum of each region’s pixel values are calculated and then the difference is taken.
In Figure 3 the masks above A are basic Haar feature masks. The masks above B and
C are horizontally and vertically scaled to capture contrast and texture that will not
fit into a square. The features extracted depend on the image format for precision and
size. Haar features can be optimized for speed using a technique discussed by Viola and
Jones [13] that allows for O(1) calculations of Haar features from an image that has had
a corresponding Integral Image computed.

In the following experiments 58 Haar features are used. Figure 3 shows the outlines
of these features to specify the coverage area. They were chosen to provide a challenge to
the classifier while still providing discriminating features.

The initial pool size is the set of feature subsets that are given to the algorithm to
start the process. There needs to be two or more feature subsets to start. Values from



Fig. 2. Images used for positive examples

Fig. 3. Left: Haar Feature Masks Used, Right: Coverage of Haar Features on Crater Image

10 to 700 are used over 1000 iterations at 5% mutation to determine the optimal value.
There does not seem to be any advantage to varying this parameter.

The maximum feature subsets accumulated variable is the limit of feature subsets
that will be maintained in memory during the program execution. This is only used for
the Weighted Random selection and the Weighted Random Simulated annealing feature
selections. Values are sampled from 3 to 1000 during 10000 iterations at 5% mutation. The
scale starts at 3 because otherwise it is the Highest Fitness Score feature selection. The
Highest Fitness Score feature selection method keeps only 2 feature subsets in memory
so there is no collection of feature subsets to vary. Figure 4 shows that the optimal values
appears to be around 10.

A mutation rate needs to be chosen for GHF, GWR, and GWRSA. The rate is the
percentage of the feature subset that will be randomly turned on or off. A constant per-
centage is used for every iteration. The elements that are changed are randomly selected
each iteration. An experiment was performed using 10,000 iterations, 10 randomly gen-
erated initial feature subsets, and a Naive Bayes Classifier. In Figure 5, 5% is shown to
be the best mutation rate.

The number of iterations used would be a limiting factor in the application of
these algorithms. Figure 5 shows all three proposed algorithm’s fitness score grouped by
iterations but varying in configurations.



Fig. 4. Left: Initial Pool Sized vs Fitness, Right: Maximum Feature Subsets Accumulated vs
Fitness

Fig. 5. Left: Average Percentage of Mutation Effectiveness, Right: Average Iteration Effect on
Fitness

Fig. 6. Comparison of Classifiers

A classifier comparison is shown in Figure 6. The best performance of these algo-
rithms is compared to the standard Naive Bayes classifier result. The algorithms always
start with the standard Naive Bayes result because they use all the features which en-
sures the result will never decline. The results show that genetically enhanced feature
selection offers a significant increase in the classification ability to the standard Naive
Bayes classifier.



5 Conclusion

This paper presented three feature selection algorithms that increase the classification
ability of the Naive Bayes classifier. This is necessary because during applications of ma-
chine learning the classifier is presented with discriminate and indiscriminate features.
This increase in classification ability is caused by training the classifier with a subset of
features containing discriminate features. This algorithm is shown to boost the classifica-
tion ability of a classifier that does not perform feature selection itself.
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