

Review of Java
• Higher Level Language Concepts

– Names and Reserved Words
– Expressions and Precedence of Operators
– Flow of Control – Selection
– Flow of Control – Repetition
– Arrays

Slides derived from Professor Bob Wilson (UMass Boston)

Review of Java

• This is a review of the material you should
have learned in CS110 or CSIT 114/115

• If you are not completely familiar with this
material, please see me. You should not
be taking this course!

• Don’t expect that you’ll catch up as we go
through the CS210 material. That’s futile!

Names and Reserved Words

• Names are used for classes and methods:
– Classes: Scanner, BingoBall
– Methods: next(), hasNext()

• Names are used for variables and constants
– Variables: i, j, current, currentValue, isOn
– Constants: SIZE, MAX_VALUE

• Reserved words are java language identifiers:
– Examples: class, return, public, static, int, boolean

Expressions and Precedence

• An expression is an ordered sequence of:
– Operators: +, -, *, /, (type), ., [], ++, ==
– Operands: variables and/or constants

• The precedence of operators determines the
order of evaluation for expressions:
– Highest: [], . (), ++, --
– Next: +(unary), -(unary), ~, !
– Next: new, (type)
– Next: *, /, %
– Next: +(binary), -(binary)
– Etc.

Flow of Control - Selection
• If statements with optional else clauses:

if (boolean condition)
statement;

else
statement;

• Switch statements
switch (integer value) {

case FIRST_VALUE:
 statements;

case SECOND_VALUE:
 statements;

default:
 statements;

}

Flow of Control - Repetition
• While

while (scan.hasNext()) {
statements; // repeated until false above

}

• For
for (int i = 0; i < MAX; i++) {

statements; // repeated until false above
}

• Do … while
do {

statements; // repeated until false below
} while (!done);

Arrays
• Arrays are a group of elements that can be

referenced via a name and an index value
• Declaring an array with or w/o initialization

int [] digits = new int [10];
OR
int [] digits = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9};

• Setting the value of an element of an array
digits [0] = 0;

• Using the values of elements of an array
int sum = digits[2] + digits[4];

Review of Java
• Object Oriented Programming Concepts

– Objects and Classes
– Encapsulation, Constructors, and Methods
– References and Aliases
– Interfaces and Inheritance
– Class Hierarchies and Polymorphism
– Generic Types (ArrayList Class)
– Exceptions

Objects and Classes

• Class Definition
public class ClassName
{

// attributes

// methods
}

• Instantiating Objects using Classes
ClassName myClassName = new ClassName();

Encapsulation
• Encapsulation of Attributes

public class ClassName
{

// constants
public static final int MAX_SIZE = 20;
private static final int DEFAULT_SIZE = 10;

// class variables
private static int largestSizeOfAll;

// instance variables
private int mySize;

}

Constructors and Methods
• Constructor (ClassName with no return type)

public class ClassName
{

public ClassName (parameter list if any)
{

 statements;
}

• Method (Method name with a return type)
public type methodName(parameter list if any)
{

 statements;
}

}

Using References

• Using a class constant
if (size <= ClassName.MAX_SIZE)

statement;

• Using a class method
type returnValue = ClassName.methodName(...);

• Using an instance method via a reference
type returnValue = myClassName.methodName(...);

Aliases and Garbage Collection

• Creating an alias of a reference
ClassName yourClassName = myClassName;

• Making object eligible for garbage collection
myClassName = yourClassName = null;

Object of class
ClassName

myClassName

yourClassName

null

null

Object of class
ClassName

myClassName

yourClassName
“Garbage”

Interfaces

• A class that implements an interface
public class ClassName implements InterfaceName
{

. . .
}

<<interface>>
InterfaceName

ClassName Class must define code
for all methods defined
in InterfaceName

Interface defines the
method signature for
all required methods

Inheritance

• A class that extends another class
public class ClassName extends SuperClassName
{

. . .
}

SuperClassName

ClassName SubClass may define code
to override some or all of
the SuperClass methods

SuperClass defines all the
methods for all SubClasses

Inheritance

• A class that extends an abstract class
public class ClassName extends SuperClassName
{

. . .
}

<<abstract>>
SuperClassName

ClassName SubClass may define code to override
some or all of the SuperClass methods,
but must define code for the signatures

SuperClass defines some of the
methods for all SubClasses, but
only defines method signatures
for the rest of the methods

Class Hierarchies and Polymorphism

• An object reference variable may hold a
reference to any compatible type of object

• Compatibility may be via implementing an
interface or inheritance from another class
ClassName a = new ClassName();

InterfaceName b = new ClassName();

SuperClassName c = new ClassName();

• Object behaves as class it was “born as”
(i.e. class used with the new operator)

Generic Types

• Collection classes like the ArrayList class
can be defined to hold a specific type of
object via a generic type designation <T>
ArrayList<String> myList = new ArrayList<String>();

• We will use generics often in CS210 with
many other types of “collection” classes

Exceptions
• When code encounters a situation that is

impossible for it to resolve, it may throw an
Exception object, e.g. NameOfException
instead of executing its normal return

• If a method may throw an exception, it
should indicate that in its method header
public void methodName() throws NameOfException
{

if (boolean condition of impossible situation)
 throw new NameOfException();

}

Exception Handling
• Code that calls a method that may throw a checked

exception must use try-catch or indicate that it
throws that exception in its own method header
try
{

statements with call to methodName();
}
catch (NameOfException e) // may be multiple catch clauses
{

statements to recover from occurrence of exception
}
finally // optional finally clause
{
 statements always performed, e.g. clean up actions
}

File Input: Example
import java.util.Scanner;
import java.io.*;

public class FileDisplay
{
 public static void main (String [] args)

throws IOException
 {
 Scanner scan = new Scanner(System.in);
 System.out.println("Enter name of file to display");
 File file = new File(scan.nextLine());

 Scanner fileScan = new Scanner (file);
 while (fileScan.hasNext())
 System.out.println(fileScan.nextLine());
 }
}

File Output: Example
import java.util.Scanner;
import java.io.*;

public class FileWrite
{
 public static void main (String [] args) throws IOException
 {
 // Get filename and instantiate File object as before

 PrintStream out = new PrintStream(file);
 while (scan.hasNext()) {
 String line = scan.nextLine();
 if (line.equals("END")) // A sentinel String value
 break;
 else
 out.println(line);
 }
 out.close();
 }
}

