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Direct vs. Iterative Algorithms

Direct Algorithms Iterative Algorithms

Use finite sequence of operations 
to arrive at solution

Start with initial guess and 
successively refine

Usually give exact solution 
(ignoring rounding errors)

May not converge to a solution at 
all

Usually limited to linear equations Can be used for nonlinear 
equations

Can be prohibitively expensive for 
large systems of equations

Deliver much better performance 
for large systems



  

Iterative Algorithms

Needed when:

1.There is no direct formula for unknown variables in 
terms of known quantities.

2.Data points needed for analysis are collected at 
different points in time

Other applications exist, but the ones above are 
frequently encountered.



  

Example 1 – Planetary Motion

Problem: Given a planet's orbital position around 
the Sun, find its position at a future time.

Solution: Solve Kepler's equation for E, where M 
and k are known constants for the planet's orbit.

Approach: Since Kepler's equation cannot be solved 
for E directly, use an iterative method such as 
Newton-Raphson, bisection, or Laguerre's algorithm.

M=E−k sin(E)



  

Example 2 – Satellite Tracking

Problem: Determine the trajectory of a satellite 
using range (distance) and range-rate (speed) data 
from radar sites. Since measurements are error 
prone, redundant information is used for accuracy.

Solution: Guess the position and velocity of the 
satellite using three radar fixes. Refine the initial 
guess when more measurements are received.    

Approach: The Kalman filter is a widely used 
iterative algorithm for dealing with measurement 
noise and uncertainty.



  

The Iterative Process

1.Guess
● Use domain knowledge, past experience, heuristics, etc. 

to guess a solution.

2.Refine
● Use governing equations or additional data to improve 

upon the previous guess

3.Repeat
● Repeat until successive improvements are within desired 

tolerance limits. Warning: Guard against infinite loops 
because the process may not converge to a solution.



  

Caveats

1.Problems can be very sensitive to the initial guess; 
slight changes can affect whether the process 
converges or not.

2.Rounding errors can affect intermediate values and 
the final outcome. The tolerance values must be 
chosen carefully.

3.Always implement checks to ensure the iteration 
terminates after a finite number of steps.



  

A Simple Application

Problem: Determine the values of the resistors in the circuit below.

Approach: Using a multimeter, measure Rm1 across ab, Rm2 across bc, Rm3 
across cd, Rm4 across ad. Use Picard iteration to calculate R1, R2, R3, R4.

 

Image Source: http://www.daviddarling.info/images/Wheatstone_bridge.jpg



  

Review of Resistors

● Equivalent resistance - resistors in series

● Equivalent resistance - resistors in parallel

Req=R1+R2+R3

Image Source : http://www.physicstutorials.org/pt/102-Electric_Current_Cheatsheet
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Picard Iteration (PicardIteration.java)

Picard iteration was originally formulated to solve 
systems of ordinary differential equations. We use it 
to solve the following system of algebraic equations 
for the unknowns R1, R2, R3, and R4. 
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Conclusion

● Iterative algorithms are used extensively in 
numerical analysis, optimization, engineering, etc. 
We have barely scratched the surface.

● A fertile field of research at the intersection of 
applied mathematics, computer science, and 
engineering.

● Merits further study. You are bound to implement an 
iterative algorithm at least once in your academic or 
professional lives!
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