

Introduction to Iterative Algorithms

CS 210 – University of Massachusetts, Boston
15 July 2014

Shiva Iyer
shiva.iyer@gmail.com

mailto:shiva.iyer@gmail.com

Direct vs. Iterative Algorithms

Direct Algorithms Iterative Algorithms

Use finite sequence of operations
to arrive at solution

Start with initial guess and
successively refine

Usually give exact solution
(ignoring rounding errors)

May not converge to a solution at
all

Usually limited to linear equations Can be used for nonlinear
equations

Can be prohibitively expensive for
large systems of equations

Deliver much better performance
for large systems

Iterative Algorithms

Needed when:

1.There is no direct formula for unknown variables in
terms of known quantities.

2.Data points needed for analysis are collected at
different points in time

Other applications exist, but the ones above are
frequently encountered.

Example 1 – Planetary Motion

Problem: Given a planet's orbital position around
the Sun, find its position at a future time.

Solution: Solve Kepler's equation for E, where M
and k are known constants for the planet's orbit.

Approach: Since Kepler's equation cannot be solved
for E directly, use an iterative method such as
Newton-Raphson, bisection, or Laguerre's algorithm.

M=E−k sin(E)

Example 2 – Satellite Tracking

Problem: Determine the trajectory of a satellite
using range (distance) and range-rate (speed) data
from radar sites. Since measurements are error
prone, redundant information is used for accuracy.

Solution: Guess the position and velocity of the
satellite using three radar fixes. Refine the initial
guess when more measurements are received.

Approach: The Kalman filter is a widely used
iterative algorithm for dealing with measurement
noise and uncertainty.

The Iterative Process

1.Guess
● Use domain knowledge, past experience, heuristics, etc.

to guess a solution.

2.Refine
● Use governing equations or additional data to improve

upon the previous guess

3.Repeat
● Repeat until successive improvements are within desired

tolerance limits. Warning: Guard against infinite loops
because the process may not converge to a solution.

Caveats

1.Problems can be very sensitive to the initial guess;
slight changes can affect whether the process
converges or not.

2.Rounding errors can affect intermediate values and
the final outcome. The tolerance values must be
chosen carefully.

3.Always implement checks to ensure the iteration
terminates after a finite number of steps.

A Simple Application

Problem: Determine the values of the resistors in the circuit below.

Approach: Using a multimeter, measure Rm1 across ab, Rm2 across bc, Rm3
across cd, Rm4 across ad. Use Picard iteration to calculate R1, R2, R3, R4.

Image Source: http://www.daviddarling.info/images/Wheatstone_bridge.jpg

Review of Resistors

● Equivalent resistance - resistors in series

● Equivalent resistance - resistors in parallel

Req=R1+R2+R3

Image Source : http://www.physicstutorials.org/pt/102-Electric_Current_Cheatsheet

1
Req

=
1
R1

+
1
R2

+
1
R3

Picard Iteration (PicardIteration.java)

Picard iteration was originally formulated to solve
systems of ordinary differential equations. We use it
to solve the following system of algebraic equations
for the unknowns R1, R2, R3, and R4.

1
R11

=
1

Rm1

−
1

R20+R30+R40

1
R21

=
1

Rm2

−
1

R10+R30+R40

1
R31

=
1

Rm3

−
1

R10+R20+R40

1
R41

=
1

Rm4

−
1

R10+R20+R30

Conclusion

● Iterative algorithms are used extensively in
numerical analysis, optimization, engineering, etc.
We have barely scratched the surface.

● A fertile field of research at the intersection of
applied mathematics, computer science, and
engineering.

● Merits further study. You are bound to implement an
iterative algorithm at least once in your academic or
professional lives!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11

