
+ iptables
packet filtering && firewall

+ what is iptables?

iptables is the userspace command line
program used to configure the linux
packet filtering ruleset

 + a.k.a. firewall

+
ip

ta
bl

e
flo

w
 c

ha
rt

+ what is packet filtering and why do we need it?

what?
a packet filter is a piece of software
that looks at the headers of packets as
they pass through, and decides the fate of
the entire packet

why?
+ control
 allow only what you specify
+ security
 protect against evil >:|
+ watchfulness
 alerts of abnormal activity

traffic can be characterized by:

+ source and/or destination ip
 trust certain hosts

+ source and/or destination port
 allow specific services

+ protocol type
 tcp, udp, icmp, etc...

+ additional parameters
 e.g. state,

+
fil

te
rin

g

+ review: ports
Once a packet has reached its destination
host, it is sent to a specific port.

+ about 65,000 available ports per host
+ the first 1024 are reserved to privileged

 processes such as daemons

+ /etc/services defines well-known ports
 e.g. Telnet:23, FTP:21, HTTP:80

+ review: protocols
Represent the kind of traffic being sent.

+ tcp // transmission control protocol
 maintains a connection between two hosts

+ udp // user datagram protocol
 sends data statelessly, without

 establishing a connection

+ icmp // internet control message protocol
 administrative functions such as PING

+ basic operations
-L List the rules.
-I <n> Insert a new rule before <n>.
-A Append a new rule at end of chain.
-R <n> Replace rule <n> with new rule.
-D <n> Delete rule <n>.
-F Flush the chain (delete all rules).
-X <chain> Delete the chain
-P <p> Set <p> as default policy for chain.
-t <table> Specify table. default is
filter

-j <target> Jump to chain target

+ match criteria
-s <source>, -d <destination>
 match source/destination ip

 + can use mask, e.g. 192.168.0.0/16

 + can precede with ! to negate

-i <interface>, -o <interface>
match input/output interface

-m state --state <state1[,state2,...]>
 NEW, ESTABLISHED, RELATED, etc...

+ match criteria
-p <protocol>
 + specify protocol: TCP, UDP, ICMP, ALL

-p <tcp|udp> --sport <p> or --dport <p>
 + match source or destination port(s)

 + for range > start[:end]

 + e.g. --sport 80, --dport !1:100

-p tcp --syn
 + new tcp connection request

 + !--syn means not new connection request

+ match criteria
-m multiport --sports <port,port>
-m multiport --dports <port,port>
 + list tcp/udp source or destination ports

 + don't have to be in a range

-m multiport --ports <port,port>
TCP/UDP ports, doesn't have to be in a

range assumed source = destination

+ targets
LOG Make a log entry.
ACCEPT Allow packet.
REJECT Send back an error response.
DROP Ignore packet without responding.

DNAT Rewrite destination ip.
SNAT Rewrite source ip / ports.
MASQUERADE Used for source nat specify
 source ports.

+ states
NEW New communication request.
ESTABLISHED Reply to previous packet.
RELATED Like ESTABLISHED, but for when
 the packet is not strictly a

 reply packet.

+ chain table
FILTER
 FORWARD filtering through nics

 INPUT filter going to server

 OUTPUT filter leaving server

NAT
 PREROUTING translation before route DNAT

 POSTROUTING translation after route SNAT

 OUTPUT translation on firewall -rare

MANGLE
 ^ all the above Modify QOS bit in tcp

+ demo

+ demo

[+] List rules

iptables -L

>> Chain INPUT (policy ACCEPT)

>> target prot opt source destination

>> Chain FORWARD (policy ACCEPT)

>> target prot opt source destination

>> Chain OUTPUT (policy ACCEPT)

>> target prot opt source destination

[+] We start off with empty chains

+ demo: block ping example

ping x.x.x.x -c 1

>> PING x.x.x.x (x.x.x.x) 56(84) bytes of data.

>> 64 bytes from x.x.x.x: icmp_req=1 ttl=64 time=1.90 ms

>> --- x.x.x.x ping statistics ---

>> 1 packets transmitted, 1 received, 0% packet loss

iptables -A INPUT -p icmp -j DROP

 |______| |_____| |_____|

 | | |

INPUT chain ---- | |

 | |

ICMP protocol ---------- |

 |

Jump to DROP target ------------

+ demo: block ping example

ping x.x.x.x -c 1

>> PING x.x.x.x (x.x.x.x) 56(84) bytes of data.

>> --- x.x.x.x ping statistics ---

>> 1 packets transmitted, 0 received, 100% packet
loss...

[+] packets were dropped, let's try rejecting them now

iptables -A INPUT -p icmp -j REJECT

 |

Jump to REJECT target ------------

ping x.x.x.x -c 1

>> From x.x.x.x icmp_seq=1 Destination Port Unreachable

>> --- x.x.x.x ping statistics ---

>> 1 pack..., 0 received, +1 errors, 100% packet loss...

+ demo: building a simple firewall

inbound rule [1]

+ Allow any connection on loopback interface.

+ Necessary because services use loopback to

 communicate among themselves on the same machine.

 # iptables -A INPUT -i lo -j ACCEPT

 |______| |___| |_______|

 | | |

INPUT chain ------ | |

 | |

Loopback interface lo --- |

 |

Jump to ACCEPT target -----------

+ demo: building a simple firewall

inbound rule [2] + outbound rule [1]

+ Allow previously established connections for both
INPUT and OUTPUT.

iptables -A INPUT

 -m state --state ESTABLISHED,RELATED -j
ACCEPT

iptables -A OUTPUT

 -m state --state ESTABLISHED,RELATED -j
ACCEPT

 |______| |_________________________|

 | |

Match by state -- |

 |

Specify state of these packets ----

+ demo: building a simple firewall

inbound rule [3+4]

+ Allow inbound SSH and web connection.

iptables -A INPUT -p tcp --dport 22 -j ACCEPT

iptables -A INPUT -p tcp --dport 80 -j ACCEPT

 |____| |________|

 | |

TCP Protocol ----------- |

 |

Destination port ---------------

+ demo: building a simple firewall

default policy

+ Now that we have specified all the traffic that we
want to allow, we can deny everything else.

iptables -P INPUT DROP

iptables -P OUTPUT DROP

 |____________|

 |

Set policy -------

+ demo: building a simple firewall

Summary

+ Allow anything on loopback interface:

 # iptables -A INPUT -i lo -j ACCEPT

+ Allow previously established connections:

 # iptables -A INPUT

 -m state --state ESTABLISHED,RELATED -j ACCEPT

 # iptables -A OUTPUT

 -m state --state ESTABLISHED,RELATED -j ACCEPT

+ Allow inbound SSH connection:

 # iptables -A INPUT -p tcp --dport 22 -j ACCEPT

+ Allow inbound web connection:

 # iptables -A INPUT -p tcp --dport 80 -j ACCEPT

+ Set default policy for all other connections:

 # iptables -P INPUT DROP

 # iptables -P OUTPUT DROP

+ demo: building a simple firewall

Summary

 # iptables -L -v

Chain INPUT (policy DROP)

target prot .. in .. src dest

ACCEPT all .. lo .. any any

ACCEPT all .. any .. any any state REL,EST

ACCEPT tcp .. any .. any any tcp dpt:ssh

ACCEPT tcp .. any .. any any tcp dpt:www

> All done? Try restarting your machine...

+ advanced examples

PERSISTANCE!!!
how to keep iptables saved!

+ save iptables

iptables-save > /etc/default/iptables

+ modify /etc/network/interfaces and append to interface

pre-ip iptables-restore < /etc/default/iptables

+ append to interfaces file (again) if you want to save
changes before network restart

post-down iptables-restore < /etc/default/iptables

+ advanced examples

+ advanced examples

Slow down em spammers

+ lets limit the amount of pings we can have per second

iptables -A INPUT -p icmp --icmp-type echo-reply

-m recent --name list --set

iptables -A INPUT -m recent --name list

--update --hitcount 20 -j DROP

+ advanced examples

let us only surf the world!

+ lets allow http/https out.

iptables -A OUTPUT -j ACCEPT -m state --state

NEW,ESTABLISHED,RELATED -o eth0 -p tcp

-m multiport --dports 80,443

+ we also should keep established connections on

iptables -A INPUT -j ACCEPT -m state --state

ESTABLISHED,RELATED -p tcp

+ advanced examples

lets log!
+ lets log all incoming icmp traffic.

iptables -A INPUT -j LOG -p icmp

+ now lets tag this information for later

iptables -A INPUT -j LOG -p icmp --log-prefix
"PING!!!"

+ lets ping! and then look at logs!

>> PING x.x.x.x (x.x.x.x) 56(84) bytes of data.

>> 64 bytes from x.x.x.x (x.x.x.x): icmp_req=1 ttl=64
time=0.086 ms

>> tail -f /var/log/syslog

Feb ... PING!!!! IN=lo OUT= ID=16559 SEQ=2

+ learning more

+ great iptable read
http://www.linuxhomenetworking.com/wiki/index.php/Quick_HOWTO_:
Ch14:_Linux_Firewalls_Using_iptables

+ ubuntu's resources on iptables
https://help.ubuntu.com/community/IptablesHowTo

+ more iptables rules!
http://www.tty1.net/blog/2007-02-06-iptables-firewall_en.html

+ very detailed definitions
http://www.linuxtopia.org/Linux_Firewall_iptables/x2682.html

