4. GREEDY ALGORITHMS |

PEARSON
g

Addison
Wesley

» coin changing

» interval scheduling
» scheduling to minimize lateness

» optimal caching

Lecture slides by Kevin Wayne
Copyright © 2005 Pearson-Addison Wesley
Copyright © 2013 Kevin Wayne

http://www.cs.princeton.edu/~wayne/kleinberg-tardos

Last updated on Sep 8, 2013 6:30 AM

4. GREEDY ALGORITHMS |

» coin changing

Coin changing

Goal. Given currency denominations: 1, 5, 10, 25, 100, devise a method
to pay amount to customer using fewest number of coins.

Ex. 34¢.

Cashier's algorithm. At each iteration, add coin of the largest value that
does not take us past the amount to be paid.

Ex. $2.89.

Cashier's algorithm

At each iteration, add coin of the largest value that does not take us past
the amount to be paid.

CASHIERS-ALGORITHM (X, c1, €2, ..., Cn)

SORT n coin denominations so that c1 < c2 < ... < ¢y,
S« ¢ <«—— setofcoins selected
WHILE x > 0
k <« largest coin denomination ¢ such that cx < x
IF no such k, RETURN "no solution"
ELSE
X «— X — Ck
S —SU{k}

RETURN S

Q. Is cashier's algorithm optimal?

Properties of optimal solution

Property. Number of pennies < 4.
Pf. Replace 5 pennies with 1 nickel.

Property. Number of nickels < 1.
Property. Number of quarters < 3.

Property. Number of nickels + number of dimes < 2.

Pf.
« Replace 3 dimes and 0 nickels with 1 quarter and 1 nickel;
* Replace 2 dimes and 1 nickel with 1 quarter.
» Recall: at most 1 nickel.

Analysis of cashier's algorithm

Theorem. Cashier's algorithm is optimal for U.S. coins: 1, 5, 10, 25, 100.
Pf. [by induction on x]
« Consider optimal way to change ¢, < x<¢,,, : greedy takes coin k.
* We claim that any optimal solution must also take coin %.
- if not, it needs enough coins of type ¢, ..., ¢, ; to add up to x
- table below indicates no optimal solution can do this
* Problem reduces to coin-changing x — ¢, cents, which, by induction,
is optimally solved by cashier's algorithm. =

K c all optimal solutions max value of coins
k :)
must satisfy C1, C2, ..., Ck-1 in any OPT

1 1 P <4 -

2 5 N <1 4

3 10 N+D <2 4+5=9
4 25 0<3 20 + 4 =24

5 100 no limit 75+ 24 =99

Cashier's algorithm for other denominations

Q. Is cashier's algorithm for any set of denominations?

A. No. Consider U.S. postage: 1,10, 21, 34, 70, 100, 350, 1225, 1500.
« Cashier's algorithm: 140¢=100+34+14+1+1+1+1+1.
« Optimal: 140¢ =70 + 70.

A. No. It may not even lead to a feasible solution if c;>1: 7, 8, 9.
« Cashier's algorithm: 15¢ =9 + 777,
« Optimal: 15¢ =7 + 8.

4. GREEDY ALGORITHMS |

» interval scheduling

\A\qnul Jesiqr

I\ JON KLEINBERG - EVA TARDOS
\

SECTION 4.1

Interval scheduling

* Job starts at s; and finishes at f..
* Two jobs compatible if they don't overlap.
e Goal: find maximum subset of mutually compatible jobs.

d
C
OopsS d an

>are incompatible

Interval scheduling: greedy algorithms

Greedy template. Consider jobs in some natural order.
Take each job provided it's compatible with the ones already taken.

[Earliest start time] Consider jobs in ascending order of ..

[Earliest finish time] Consider jobs in ascending order of f.

[Shortest interval] Consider jobs in ascending order of f—s,.

[Fewest conflicts] For each job j, count the number of
conflicting jobs ¢,. Schedule in ascending order of ¢,

10

Interval scheduling: greedy algorithms

Greedy template. Consider jobs in some natural order.
Take each job provided it's compatible with the ones already taken.

counterexample for earliest start time

counterexample for shortest interval

counterexample for fewest conflicts

11

Interval scheduling: earliest-finish-time-first algorithm

EARLIEST-FINISH-TIME-FIRST (n, 51, 2, ..., Su, f1, f2, ..., fn)

SORT jobs by finish time so that /i < 2 < ... < f
A «— ¢ <«— setof jobs selected
FOR j=1 TO n
IF job j 1s compatible with 4
A —AU{j}

RETURN 4

Proposition. Can implement earliest-finish-time first in O(n log n) time.
* Keep track of job j* that was added last to A.
« Job j is compatible with 4 iff s, > f...
* Sorting by finish time takes O(n log n) time.

12

Interval scheduling: analysis of earliest-finish-time-first algorithm

Theorem. The earliest-finish-time-first algorithm is optimal.

Pf. [by contradiction]
« Assume greedy is not optimal, and let's see what happens.
e Letiy, i, ... iydenote set of jobs selected by greedy.
e Letj, j», ..- j,, denote set of jobs in an optimal solution with
i\ =J1, I,=Jj,, ..., .=, fOr the largest possible value of r.

job i, exists and finishes before j,,,

|

Greedy: i iy i I . I

v

o i 2 J -

why not replace job j..;
with JOb il’+]?

13

Interval scheduling: analysis of earliest-finish-time-first algorithm

Theorem. The earliest-finish-time-first algorithm is optimal.

Pf. [by contradiction]
« Assume greedy is not optimal, and let's see what happens.
e Letiy, i, ... iydenote set of jobs selected by greedy.
e Letj, j», ..- j,, denote set of jobs in an optimal solution with
i\ =J1, I,=Jj,, ..., .=, fOr the largest possible value of r.

job i, exists and finishes before j,,,

|

Greedy: i iy i I . I

v

OPT: Ji 2 Jr lra) B 1

solution still feasible and optimal
(but contradicts maximality of r)

14

Interval partitioning

Interval partitioning.
* Lecture j starts at s; and finishes at f..
* Goal: find minimum number of classrooms to schedule all lectures
so that no two lectures occur at the same time in the same room.

Ex. This schedule uses 4 classrooms to schedule 10 lectures.

4 e J
3 C d g

2 b h

] a f [

y

9 9:30 10 10:30 11 11:30 12 12:30 1 1:30 2 2:30 3 3:30 4 4:30 time

15

Interval partitioning

Interval partitioning.
* Lecture j starts at s; and finishes at f..
* Goal: find minimum number of classrooms to schedule all lectures
so that no two lectures occur at the same time in the same room.

Ex. This schedule uses 3 classrooms to schedule 10 lectures.

y

9 9:30 10 10:30 11 11:30 12 12:30 1 1:30 2 2:30 3 3:30 4 4:30

time

16

Interval partitioning: greedy algorithms

Greedy template. Consider lectures in some natural order.
Assign each lecture to an available classroom (which one?);
allocate a new classroom if none are available.

[Earliest start time] Consider lectures in ascending order of s,.

[Earliest finish time] Consider lectures in ascending order of f.

[Shortest interval] Consider lectures in ascending order of f;—s,.

[Fewest conflicts] For each lecture j, count the number of
conflicting lectures ¢;. Schedule in ascending order of ¢..

17

Interval partitioning: greedy algorithms

Greedy template. Consider lectures in some natural order.
Assign each lecture to an available classroom (which one?);
allocate a new classroom if none are available.

counterexample for earliest finish time

counterexample for shortest interval

counterexample for fewest conflicts

18

Interval partitioning: earliest-start-time-first algorithm

EARLIEST-START-TIME-FIRST (n, s1, S2, ..., Su, f1, f2, «-v, f1)

SORT lectures by start time so thats; < s2 < ... < 55
d < 0 <«— number of allocated classrooms
FOR j=1TO n
[F lecture j 1s compatible with some classroom
Schedule lecture j in any such classroom £.
ELSE
Allocate a new classroom d + 1.
Schedule lecture j in classroom d + 1.
d—d +1

RETURN schedule.

19

Interval partitioning: earliest-start-time-first algorithm

Proposition. The earliest-start-time-first algorithm can be implemented in
O(n log n) time.

Pf. Store classrooms in a priority queue (key = finish time of its last lecture).
* To determine whether lecture j is compatible with some classroom,
compare s; to key of min classroom & in priority queue.
* To add lecture j to classroom k, increase key of classroom £ to f.
* Total number of priority queue operations is O(n).
* Sorting by start time takes O(n log n) time. =

Remark. This implementation chooses the classroom k& whose finish time
of its last lecture is the earliest.

20

4. GREEDY ALGORITHMS |

» scheduling to minimize lateness

A\qmll Jesiqr

\ JON KLEINBERG - EVA TARDOS
\

SECTION 4.2

Scheduling to minimizing lateness

Minimizing lateness problem.
» Single resource processes one job at a time.

Job j requires ¢ units of processing time and is due at time d;.

If j starts at time s;, it finishes at time f;=s; + ¢;.

Lateness: ¢; =max {0, f;—d, }.

Goal: schedule all jobs to minimize maximum lateness L = max; ¢,.

120345 6
EN: : @ : ; :
. R

lateness = 2 lateness = 0 max lateness = 6

/ / /

d3=9 d2=8 d6=]5 d]=6 d5=]4 d4=9

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

24

Minimizing lateness: greedy algorithms

Greedy template. Schedule jobs according to some natural order.

* [Shortest processing time first] Schedule jobs in ascending order of
processing time ¢.

« [Earliest deadline first] Schedule jobs in ascending order of deadline 4.

« [Smallest slack] Schedule jobs in ascending order of slack d; .

25

Minimizing lateness: greedy algorithms

Greedy template. Schedule jobs according to some natural order.

« [Shortest processing time first] Schedule jobs in ascending order of
processing time .

1 2
counterexample

counterexample

26

Minimizing lateness: earliest deadline first

EARLIEST-DEADLINE-FIRST (n, t, to, ..., ta, d1, do, ..., dn)

SORT n jobs sothatdi < d> < ... < d,.
t<—0
FOR j=1TO n
Assign job j to interval [¢, ¢ +].
Sj«—1t; fi —t+y
[<+

RETURN intervals [s1, f1], [s2, 2], ..., [Sn, fu].

max lateness = 1

|

d]=6 d2=8 d3=9 d4=9 d5=]4 d6=]5

v

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

27

Minimizing lateness: no idle time

Observation 1. There exists an optimal schedule with no idle time.

d=4 d=6 d=12

0 1 2 3 4 5 6 7 8 9 10 11 g
d=4 d=6 d=12

0 1 2 3 4 5 6 7 8 9 10 11 -

Observation 2. The earliest-deadline-first schedule has no idle time.

28

Greedy analysis strategies

Greedy algorithm stays ahead. Show that after each step of the greedy
algorithm, its solution is at least as good as any other algorithm's.

Structural. Discover a simple "structural” bound asserting that every
possible solution must have a certain value. Then show that your algorithm
always achieves this bound.

Exchange argument. Gradually transform any solution to the one found by
the greedy algorithm without hurting its quality.

Other greedy algorithms. Gale-Shapley, Kruskal, Prim, Dijkstra, Huffman, ...

32

4. GREEDY ALGORITHMS |

» optimal caching

\A\qnul Jesiqr

I\ JON KLEINBERG - EVA TARDOS
\

SECTION 4.3

Optimal offline caching

Caching.
* Cache with capacity to store k items.
e Sequence of m item requests d, d,, ..., d,,.
e Cache hit: item already in cache when requested.
« Cache miss: item not already in cache when requested: must bring
requested item into cache, and evict some existing item, if full.

Goal. Eviction schedule that minimizes number of evictions.

cache miss
(eviction)
-
Ex. k=2, initial cache = ab, requests: a, b, ¢, b, ¢, a, a. n 1 b
Optimal eviction schedule. 2 evictions. et
- e
:
R -
- A

requests cache 34

Optimal offline caching: greedy algorithms

LIFO / FIFO. Evict element brought in most (1east)recently.
LRU. Evict element whose most recent access was earliest.
LFU. Evict element that was least frequently requested.

previous queries

a W X Yy z FIFO: eject a
a w x d Z LRU: eject d
a w x d z
a b x d z
b ¢ d =z
current cache a b ¢ d e LIFO: eject e

cache miss e
(which item to eject?)

QL

future queries

35

(least)

Optimal offline caching: farthest-in-future (clairvoyant algorithm)

Farthest-in-future. Evict item in the cache that is not requested until
farthest in the future.

o}
(on
@]
o
M

current cache

cache miss ——
(which item to eject?)

FF: eject d

o)

c g

M e~

= C (@) —h
m-‘

m(‘b

Theorem. [Belady 1966] FF is optimal eviction schedule.
Pf. Algorithm and theorem are intuitive; proof is subtle.

36

Caching perspective

Online vs. offline algorithms.
o Offline: full sequence of requests is known a priori.
* Online (reality): requests are not known in advance.
* Caching is among most fundamental online problems in CS.

LIFO. Evict page brought in most recently.
LRU. Evict page whose most recent access was earliest.

f

FIF with direction of time reversed!

Theorem. FF is optimal offline eviction algorithm.

* Provides basis for understanding and analyzing online algorithms.

* LRU is k-competitive. [Section 13.8]
* LIFO is arbitrarily bad.

44

