

Lecture slides by Kevin Wayne
Copyright © 2005 Pearson-Addison Wesley
Copyright © 2013 Kevin Wayne

http://www.cs.princeton.edu/~wayne/kleinberg-tardos

4. GREEDY ALGORITHMS II

- Dijkstra's algorithm
- minimum spanning trees
- Prim, Kruskal,
- single-link clustering

SECTION 4.4

4. GREEDY ALGORITHMS II

- Dijkstra's algorithm
- minimum spanning trees
- Prim, Kruskal,
- ▶ single-link clustering

Shortest-paths problem

Problem. Given a digraph G = (V, E), edge lengths $\ell_e \ge 0$, source $s \in V$, and destination $t \in V$, find the shortest directed path from s to t.

destination t

length of path = 9 + 4 + 1 + 11 = 25

Car navigation

Shortest path applications

- PERT/CPM.
- Map routing.
- Seam carving.
- Robot navigation.
- Texture mapping.
- Typesetting in LaTeX.
- Urban traffic planning.
- Telemarketer operator scheduling.
- Routing of telecommunications messages.
- Network routing protocols (OSPF, BGP, RIP).
- Optimal truck routing through given traffic congestion pattern.

Reference: Network Flows: Theory, Algorithms, and Applications, R. K. Ahuja, T. L. Magnanti, and J. B. Orlin, Prentice Hall, 1993.

Dijkstra's algorithm

Greedy approach. Maintain a set of explored nodes S for which algorithm has determined the shortest path distance d(u) from S to U.

- Initialize $S = \{ s \}, d(s) = 0.$
- Repeatedly choose unexplored node v which minimizes

$$\pi(v) = \min_{e = (u,v): u \in S} d(u) + \ell_e,$$

shortest path to some node u in explored part, followed by a single edge (u, v)

Dijkstra's algorithm

Greedy approach. Maintain a set of explored nodes S for which algorithm has determined the shortest path distance d(u) from S to U.

- Initialize $S = \{ s \}, d(s) = 0.$
- Repeatedly choose unexplored node v which minimizes

$$\pi(v) = \min_{e = (u,v): u \in S} d(u) + \ell_e,$$

add v to S, and set $d(v) = \pi(v)$.

shortest path to some node u in explored part, followed by a single edge (u, v)

Dijkstra's algorithm: proof of correctness

Invariant. For each node $u \in S$, d(u) is the length of the shortest $s \rightarrow u$ path.

Pf. [by induction on |S|]

Base case: |S| = 1 is easy since $S = \{ s \}$ and d(s) = 0.

Inductive hypothesis: Assume true for $|S| = k \ge 1$.

- Let v be next node added to S, and let (u, v) be the final edge.
- The shortest $s \rightarrow u$ path plus (u, v) is an $s \rightarrow v$ path of length $\pi(v)$.
- Consider any $s \rightarrow v$ path P. We show that it is no shorter than $\pi(v)$.
- Let (x, y) be the first edge in P that leaves S, and let P' be the subpath to x.
- *P* is already too long as soon as it reaches *y*.

$$\ell(P) \geq \ell(P') + \ell(x,y) \geq d(x) + \ell(x,y) \geq \pi(y) \geq \pi(v) \quad \blacksquare$$

$$\uparrow \qquad \qquad \uparrow \qquad \qquad \uparrow$$

$$\uparrow \qquad \qquad \uparrow$$

$$\downarrow \qquad \qquad \downarrow$$

Dijkstra's algorithm: efficient implementation

Implementation.

- Algorithm stores d(v) for each explored node v.
- Priority queue stores $\pi(v)$ for each unexplored node v.
- Recall: $d(u) = \pi(u)$ when u is deleted from priority queue.

```
DIJKSTRA (V, E, s)
Create an empty priority queue.
FOR EACH v \neq s: d(v) \leftarrow \infty; d(s) \leftarrow 0.
FOR EACH v \in V: insert v with key d(v) into priority queue.
WHILE (the priority queue is not empty)
   u \leftarrow delete-min from priority queue.
   FOR EACH edge (u, v) \in E leaving u:
      IF d(v) > d(u) + \ell(u, v)
         decrease-key of v to d(u) + \ell(u, v) in priority queue.
         d(v) \leftarrow d(u) + \ell(u, v).
```

Dijkstra's algorithm: which priority queue?

Performance. Depends on PQ: *n* insert, *n* delete-min, *m* decrease-key.

- Array implementation optimal for dense graphs.
- Binary heap much faster for sparse graphs.
- 4-way heap worth the trouble in performance-critical situations.
- Fibonacci/Brodal best in theory, but not worth implementing.

PQ implementation	insert	delete-min	decrease-key	total
unordered array	<i>O</i> (1)	O(n)	<i>O</i> (1)	$O(n^2)$
binary heap	$O(\log n)$	$O(\log n)$	$O(\log n)$	$O(m \log n)$
d-way heap (Johnson 1975)	$O(d \log_d n)$	$O(d \log_d n)$	$O(\log_d n)$	$O(m \log_{m/n} n)$
Fibonacci heap (Fredman-Tarjan 1984)	<i>O</i> (1)	$O(\log n)$ [†]	<i>O</i> (1) †	$O(m + n \log n)$
Brodal queue (Brodal 1996)	<i>O</i> (1)	$O(\log n)$	<i>O</i> (1)	$O(m + n \log n)$

SECTION 6.1

4. GREEDY ALGORITHMS II

- Dijkstra's algorithm
- minimum spanning trees
- Prim, Kruskal
- ▶ single-link clustering

Cycles and cuts

Def. A path is a sequence of edges which connects a sequence of nodes.

Def. A cycle is a path with no repeated nodes or edges other than the starting and ending nodes.

cycle
$$C = \{ (1, 2), (2, 3), (3, 4), (4, 5), (5, 6), (6, 1) \}$$

Cycles and cuts

Def. A cut is a partition of the nodes into two nonempty subsets S and V-S.

Def. The cutset of a cut *S* is the set of edges with exactly one endpoint in *S*.

cutset D = { (3, 4), (3, 5), (5, 6), (5, 7), (8, 7) }

Cycle-cut intersection

Proposition. A cycle and a cutset intersect in an even number of edges.

Cycle-cut intersection

Proposition. A cycle and a cutset intersect in an even number of edges.

Pf. [by picture]

Spanning tree properties

Proposition. Let T = (V, F) be a subgraph of G = (V, E). TFAE:

- *T* is a spanning tree of *G*.
- *T* is acyclic and connected.
- T is connected and has n-1 edges.
- T is acyclic and has n-1 edges.
- T is minimally connected: removal of any edge disconnects it.
- *T* is maximally acyclic: addition of any edge creates a cycle.
- T has a unique simple path between every pair of nodes.

Minimum spanning tree

Given a connected graph G = (V, E) with edge costs c_e , an MST is a subset of the edges $T \subseteq E$ such that T is a spanning tree whose sum of edge costs is minimized.

$$MST cost = 50 = 4 + 6 + 8 + 5 + 11 + 9 + 7$$

Cayley's theorem. There are n^{n-2} spanning trees of K_n . \leftarrow can't solve by brute force

Applications

MST is fundamental problem with diverse applications.

- Dithering.
- · Cluster analysis.
- Max bottleneck paths.
- Real-time face verification.
- LDPC codes for error correction.
- Image registration with Renyi entropy.
- Find road networks in satellite and aerial imagery.
- Reducing data storage in sequencing amino acids in a protein.
- Model locality of particle interactions in turbulent fluid flows.
- Autoconfig protocol for Ethernet bridging to avoid cycles in a network.
- Approximation algorithms for NP-hard problems (e.g., TSP, Steiner tree).
- Network design (communication, electrical, hydraulic, computer, road).

Fundamental cycle

Fundamental cycle.

- Adding any non-tree edge e to a spanning tree T forms unique cycle C.
- Deleting any edge $f \in C$ from $T \cup \{e\}$ results in new spanning tree.

Observation. If $c_e < c_f$, then T is not an MST.

Fundamental cutset

Fundamental cutset.

- Deleting any tree edge f from a spanning tree T divide nodes into two connected components. Let D be cutset.
- Adding any edge $e \in D$ to $T \{f\}$ results in new spanning tree.

Observation. If $c_e < c_f$, then T is not an MST.

SECTION 6.2

4. GREEDY ALGORITHMS II

- Dijkstra's algorithm
- minimum spanning trees
- Prim, Kruskal
- ▶ single-link clustering

Prim's algorithm

Initialize S =any node.

Repeat n-1 times:

- Add to tree the min weight edge with one endpoint in *S*.
- Add new node to *S*.

Prim's algorithm: implementation

Theorem. Prim's algorithm can be implemented in $O(m \log n)$ time.

Pf. Implementation almost identical to Dijkstra's algorithm.

[d(v) = weight of cheapest known edge between v and S]

```
PRIM(V, E, c)
Create an empty priority queue.
s \leftarrow \text{any node in } V.
FOR EACH v \neq s: d(v) \leftarrow \infty; d(s) \leftarrow 0.
FOR EACH v: insert v with key d(v) into priority queue.
WHILE (the priority queue is not empty)
   u \leftarrow delete-min from priority queue.
   FOR EACH edge (u, v) \in E incident to u:
      IF d(v) > c(u, v)
         decrease-key of v to c(u, v) in priority queue.
         d(v) \leftarrow c(u, v).
```

Kruskal's algorithm

Consider edges in ascending order of weight:

• Add to tree unless it would create a cycle.

Kruskal's algorithm: implementation

Theorem. Kruskal's algorithm can be implemented in $O(m \log m)$ time.

- Sort edges by weight.
- Use union-find data structure to dynamically maintain connected components.

```
KRUSKAL(V, E, c)
SORT m edges by weight so that c(e_1) \leq c(e_2) \leq ... \leq c(e_m)
S \leftarrow \phi
FOREACH v \in V: MAKESET(v).
FOR i = 1 TO m
   (u, v) \leftarrow e_i
   IF FINDSET(u) \neq FINDSET(v) are u and v in same component?
      S \leftarrow S \cup \{e_i\}
      UNION(u, v). \leftarrow make u and v in same component
RETURN S
```

Does a linear-time MST algorithm exist?

deterministic compare-based MST algorithms

year	worst case	discovered by	
1975	$O(m \log \log n)$	Yao	
1976	$O(m \log \log n)$	Cheriton-Tarjan	
1984	$O(m \log^* n) \ O(m + n \log n)$	Fredman-Tarjan	
1986	$O(m \log (\log^* n))$	Gabow-Galil-Spencer-Tarjan	
1997	$O(m \alpha(n) \log \alpha(n))$	Chazelle	
2000	$O(m \alpha(n))$	Chazelle	
2002	optimal	Pettie-Ramachandran	
20xx	O(m)	???	

Remark 1. O(m) randomized MST algorithm. [Karger-Klein-Tarjan 1995]

Remark 2. O(m) MST verification algorithm. [Dixon-Rauch-Tarjan 1992]

SECTION 4.7

4. GREEDY ALGORITHMS II

- Dijkstra's algorithm
- minimum spanning trees
- Prim, Kruskal
- single-link clustering

Clustering

Goal. Given a set U of n objects labeled $p_1, ..., p_n$, partition into clusters so that objects in different clusters are far apart.

outbreak of cholera deaths in London in 1850s (Nina Mishra)

Applications.

- Routing in mobile ad hoc networks.
- Document categorization for web search.
- Similarity searching in medical image databases
- Skycat: cluster 109 sky objects into stars, quasars, galaxies.

• ...

Clustering of maximum spacing

k-clustering. Divide objects into *k* non-empty groups.

Distance function. Numeric value specifying "closeness" of two objects.

- $d(p_i, p_i) = 0$ iff $p_i = p_i$ [identity of indiscernibles]
- $d(p_i, p_j) \ge 0$ [nonnegativity]
- $d(p_i, p_i) = d(p_i, p_i)$ [symmetry]

Spacing. Min distance between any pair of points in different clusters.

Goal. Given an integer k, find a k-clustering of maximum spacing.

Greedy clustering algorithm

"Well-known" algorithm in science literature for single-linkage k-clustering:

- Form a graph on the node set *U*, corresponding to *n* clusters.
- Find the closest pair of objects such that each object is in a different cluster, and add an edge between them.
- Repeat n k times until there are exactly k clusters.

Key observation. This procedure is precisely Kruskal's algorithm (except we stop when there are k connected components).

Alternative. Find an MST and delete the k-1 longest edges.

Dendrogram of cancers in human

Tumors in similar tissues cluster together.

