4. GREEDY ALGORITHMS I

PEARSON
g

Addison
Wesley

» Dijkstra's algorithm

» minimum spanning trees
» Prim, Kruskal

» single-link clustering

Lecture slides by Kevin Wayne
Copyright © 2005 Pearson-Addison Wesley
Copyright © 2013 Kevin Wayne

http://www.cs.princeton.edu/~wayne/kleinberg-tardos

Last updated on Sep 8, 2013 6:30 AM

ieee8023

ieee8023

4. GREEDY ALGORITHMS I

» Dijkstra's algorithm

\A\qnul Jesiqr

I\ JON KLEINBERG - EVA TARDOS
\

SECTION 4.4

ieee8023

ieee8023

ieee8023

Shortest-paths problem

Problem. Given a digraph G =(V, E), edge lengths ¢, = 0, source s€'V,
and destination €V, find the shortest directed path from s to +.

source s 3

destination t

length of path=9+4 + 1 + 11 = 25

Car navigation

—— . VO

™ v - —
’ § s W Sant;
Yyl Yyt A AR N

T YRy

L L A
V.

) b

v Almaden Blvd v vv DN N
T
A l

185 West San Carlos Street (CA-82)

Shortest path applications

« PERT/CPM.

 Map routing.

« Seam carving.

* Robot navigation.

« Texture mapping.

« Typesetting in LaTeX.

« Urban traffic planning.

* Telemarketer operator scheduling.

* Routing of telecommunications messages.
* Network routing protocols (OSPF, BGP, RIP).
« Optimal truck routing through given traffic congestion pattern.

Reference: Network Flows: Theory, Algorithms, and Applications, R. K. Ahuja, T. L. Magnanti, and J. B. Orlin, Prentice Hall, 1993.

Dijkstra's algorithm

Greedy approach. Maintain a set of explored nodes S for which
algorithm has determined the shortest path distance d(x) from s to u.
* Initialize S={s}, d(s)=0.
* Repeatedly choose unexplored node v which minimizes

n(v)= min du)+/,,
e=(u,v):ues

AN

shortest path to some node u in explored part,
followed by a single edge (u, v)

Dijkstra's algorithm

Greedy approach. Maintain a set of explored nodes S for which
algorithm has determined the shortest path distance d(x) from s to u.
* Initialize S={s}, d(s)=0.
* Repeatedly choose unexplored node v which minimizes

n(v)= min du)+/,,

e=(u,v):ues
AN

add v to S, and set d(v) = (v). shortest path to some node u in explored part,
followed by a single edge (u, v)

d(v)

Dijkstra's algorithm: proof of correctness

Invariant. For each node u €S, d(u) is the length of the shortest s~u path.
Pf. [by induction on |S1]
Base case: ISI=1is easy since S={s} and d(s) =0.
Inductive hypothesis: Assume true for ISI=k = 1.
* Let v be next node added to S, and let (u, v) be the final edge.

The shortest s~u path plus (u,v) is an s~v path of length n(v).

Consider any s~v path P. We show that it is no shorter than n(v).

Let (x,y) be the first edge in P that leaves S,
and let P' be the subpath to x.

PI
* Pis already too long as soon as it reaches y. PO MO ’@
on Ny
S ®\ |
IP) = P+ l(x,y) = dx)+ l(x,y) = @t(y) = 7T(V) = ©
) t) t
nonnegative inductive definition Dijkstra chose v

lengths hypothesis of m(y) instead of y

Dijkstra's algorithm: efficient implementation

Implementation.
* Algorithm stores d(v) for each explored node v.
* Priority queue stores z(v) for each unexplored node v.
* Recall: d(u) =z (u) when u is deleted from priority queue.

DUKSTRA (V, E, s)

Create an empty priority queue.
FOREACHV#s: d(v) «— ©; d(s) <« O.
FOR EACH v € V': insert v with key d(v) into priority queue.
WHILE (the priority queue is not empty)
u < delete-min from priority queue.
FOR EACH edge (u, v) € E leaving u:
IF d(v) > d(u) + €(u,v)
decrease-key of vto d(u) + ¢(u, v) in priority queue.
dv) —du) + f(u,v).

10

Dijkstra's algorithm: which priority queue?

Performance. Depends on PQ: #n insert, n delete-min, m decrease-key.
« Array implementation optimal for dense graphs.
« Binary heap much faster for sparse graphs.
* 4-way heap worth the trouble in performance-critical situations.
* Fibonacci/Brodal best in theory, but not worth implementing.

unordered array 0(1) O(n) o(1) O(n?)
binary heap O(log n) O(log n) O(log n) O(m log n)
d-way heap

(Johnson 1975) O(d loga n) O(d loga n) O(loga n) O(m logmn n)

Fibonacci heap
(Fredman-Tarjan 1984) o(1) O(log n) o) O(m + nlog n)

Brodal queue
(Brodal 1996) o(1) O(log n) O(1) O(m + nlog n)

+ amortized

4. GREEDY ALGORITHMS I

Data Structures

and Network Algorithms » minimum spanning trees

ROBERT ENDRE TARJAN

Bell Laboxniones
Murtyy Hill, New Jorsey

CBMS-NSF
REGIONAL CONFERENCE SERIES
IN APPLIED MATHEMATICS

SECTION 6.1

Cycles and cuts

Def. A path is a sequence of edges which connects a sequence of nodes.

Def. A cycle is a path with no repeated nodes or edges other than the
starting and ending nodes.

(> ©

@ ® ® <

@

cycle C = { (1, 2), (2, 3), (3, 4), (4, 5), (5, 6), (6, 1) }

14

Cycles and cuts

Def. A cut is a partition of the nodes into two nonempty subsets S and V -S.

Def. The cutset of a cut Sis the set of edges with exactly one endpoint in S.

@ (3)

(M (6 e Q cus

@ o

cutset D = { (3, 4), (3, 5), (5, 6), (5, 7), (8, 7) }

15

Cycle-cut intersection

Proposition. A cycle and a cutset intersect in an even number of edges.

cutset D = { (3, 4), (3, 5),(5,6),(5,7),(8,7) }
cycle C = { (1, 2), (2, 3), (3, 4), (4, 5),(5,6), (6, 1) }
intersection C N D = { (3, 4), (5,6) }

16

Cycle-cut intersection

Proposition. A cycle and a cutset intersect in an even number of edges.
Pf. [by picture]

17

Spanning tree properties

Proposition. Let T=(V,F) be a subgraph of G=(V,E). TFAE:

T is a spanning tree of G.

T is acyclic and connected.

T is connected and has n -1 edges.

T is acyclic and has n — 1 edges.

T is minimally connected: removal of any edge disconnects it.
T is maximally acyclic: addition of any edge creates a cycle.

T has a unique simple path between every pair of nodes.

T=(NF

18

Minimum spanning tree

Given a connected graph G = (V, E) with edge costs c,, an MST is a subset of
the edges TC E such that T is a spanning tree whose sum of edge costs is

<= .7

minimized.

10 14 .
2 Ao

MSTcost=50=4+6+8+5+11+9+7

Cayley's theorem. There are n72 spanning trees of K,. <— can'tsolve by brute force

19

Applications

MST is fundamental problem with diverse applications.

Dithering.

Cluster analysis.

Max bottleneck paths.

Real-time face verification.

LDPC codes for error correction.

Image registration with Renyi entropy.

Find road networks in satellite and aerial imagery.

Reducing data storage in sequencing amino acids in a protein.

Model locality of particle interactions in turbulent fluid flows.
Autoconfig protocol for Ethernet bridging to avoid cycles in a network.
Approximation algorithms for NP-hard problems (e.g., TSP, Steiner tree).
Network design (communication, electrical, hydraulic, computer, road).

20

Fundamental cycle

Fundamental cycle.
* Adding any non-tree edge e to a spanning tree T forms unique cycle C.
* Deleting any edge f €C from T U { e} results in new spanning tree.

T=(VF

Observation. If c.<cp then T is not an MST.

21

Fundamental cutset

Fundamental cutset.
* Deleting any tree edge ffrom a spanning tree T divide nodes into
two connected components. Let D be cutset.
* Adding any edge e D to T—- { f} results in new spanning tree.

T=(VF

Observation. If ¢, < ¢, then T is not an MST.

22

4. GREEDY ALGORITHMS I

Data Structures

and Network Algorithms

e meent » Prim, Kruskal

Murtyy Hill, New Jorsey

CBMS-NSF
REGIONAL CONFERENCE SERIES
IN APPLIED MATHEMATICS

SECTION 6.2

ieee8023

Prim's algorithm

Initialize S = any node.

Repeat n—1 times:
* Add to tree the min weight edge with one endpoint in S.
* Add new node to S.

30

Prim's algorithm: implementation

Theorem. Prim's algorithm can be implemented in O(m log n) time.
Pf. Implementation almost identical to Dijkstra's algorithm.
[d(v) = weight of cheapest known edge between v and §]

PRIM (¥, E, ¢)

Create an empty priority queue.
s < any node in V.
FOREACHV#5s : d(v) «— ©; d(s) <« O.
FOR EACH v : insert v with key d(v) into priority queue.
WHILE (the priority queue is not empty)

u «<— delete-min from priority queue.

FOR EACH edge (1, v) € E incident to u:

IF d(v) > c(u,v)
decrease-key of v to c(u, v) in priority queue.

dv) «— c(u,v).

31

Kruskal's algorithm

Consider edges in ascending order of weight:
« Add to tree unless it would create a cycle.

OO0

32

Kruskal's algorithm: implementation

Theorem. Kruskal's algorithm can be implemented in O(m log m) time.

» Sort edges by weight.
* Use union-find data structure to dynamically maintain connected
components.

KRUSKAL (V] E, ¢)

SORT m edges by weight so that c(e1) < c(e2) <... <c(em)
S—¢

FOREACH v € V: MAKESET(v).

FOR i =1TO m

(u,v) «—ei
are u and v in

IF FINDSET(u) # FINDSET(v) <— same component?

S<—SU{€1'}

UNION(u, v). «<—

make u and v in
same component

RETURN §

33

Does a lineartime MST algorithm exist?

deterministic compare-based MST algorithms

year worst case discovered by

1975 O(m log log n) Yao

1976 O(m log log n) Cheriton-Tarjan

1984 O(m log*n) O(m + nlog n) Fredman-Tarjan

1986 O(m log (log* n)) Gabow-Galil-Spencer-Tarjan PRINCETON
UNIVERSITY

1997 O(m a(n) log a(n)) Chazelle

2000 O(m o(n)) Chazelle

2002 optimal Pettie-Ramachandran

20xx O(m) 77

Remark 1. O@m) randomized MST algorithm. [Karger-Klein- 1995]

Remark 2. O(m) MST verification algorithm. [Dixon- : 1992]

41

4. GREEDY ALGORITHMS I

» single-link clustering

A\qmll Jesiqr

\ JON KLEINBERG - EVA TARDOS
\

SECTION 4.7

ieee8023

ieee8023

Clustering

Goal. Given a set U of n objects labeled p, ..., p,, partition into clusters so
that objects in different clusters are far apart.

outbreak of cholera deaths in London in 1850s (Nina Mishra)

Applications.
* Routing in mobile ad hoc networks.
 Document categorization for web search.

Similarity searching in medical image databases
Skycat: cluster 109 sky objects into stars, quasars, galaxies.

43

Clustering of maximum spacing

k-clustering. Divide objects into kK non-empty groups.

Distance function. Numeric value specifying "closeness" of two objects.
* d(p;,p) = 0iff p;=p, [identity of indiscernibles]
* dp.,p) =0 [nonnegativity]
* dp;,pp = dp;,p) [symmetry]

Spacing. Min distance between any pair of points in different clusters.

Goal. Given an integer k, find a k-clustering of maximum spacing.

distance between two clusters ° Shcimnee B
two closest clusters

P

4-clustering 44

Greedy clustering algorithm

“Well-known” algorithm in science literature for single-linkage k-clustering:
* Form a graph on the node set U, corresponding to n clusters.
* Find the closest pair of objects such that each object is in a different
cluster, and add an edge between them.
* Repeat n -k times until there are exactly k clusters.

ﬂ,(r + T

Key observation. This procedure is precisely Kruskal's algorithm
(except we stop when there are k connected components).

Alternative. Find an MST and delete the k-1 longest edges.

45

Dendrogram of cancers in human

Tumors in similar tissues cluster together.

e e

gene 1
genen
Skin Liver Lung Breast Tumors Breast Normal Kidney Prostate Brain APL Ovary
Luminal Tumors Breast
Basal

. gene expressed
Reference: Botstein & Brown group

. gene not expressed

47

