5. DivIDE AND CONQUER |

PEARSON
g

Addison
Wesley

» mergesort

» counting inversions

» closest pair of points

Lecture slides by Kevin Wayne
Copyright © 2005 Pearson-Addison Wesley
Copyright © 2013 Kevin Wayne

http://www.cs.princeton.edu/~wayne/kleinberg-tardos

Last updated on Oct 2, 2013 9:51 AM

Divide-and-conquer paradigm

Divide-and-conquer.
* Divide up problem into several subproblems.
* Solve each subproblem recursively.
« Combine solutions to subproblems into overall solution.

Most common usage.
* Divide problem of size n into two subproblems of size n/2 in linear time.
* Solve two subproblems recursively.
« Combine two solutions into overall solution in linear time.

Consequence.

* Brute force: O®?). DIVIDE
ET IMPER A

* Divide-and-conquer: O(n log n).

FY, N v

attributed to Julius Caesar

5. DIVIDE AND CONQUER

» mergesort

\A\qnul Jesiqr

I\ JON KLEINBERG - EVA TARDOS
\

SECTION 5.1

Sorting problem

Problem. Given a list of n elements from a totally-ordered universe,
rearrange them in ascending order.

Born In The U.S.A.
Bruce Springsteen

Name Artist 4 Time Album ‘
12 ¥ Let It Be The Beatles 4:03 LetltBe
13 ™ Take My Breath Away BERLIN 4:13 Top Gun - Soundtrack
14 & Circle Of Friends Better Than Ezra 3:27 Empire Records
15 # Dancing With Myself Billy Idol 4:43 Don't Stop
16 ¥ Rebel Yell Billy Idol 4:49 Rebel Yell
17 ¥ Piano Man Billy Joel 5:36 Greatest Hits Vol. 1
18 ¥ Pressure Billy Joel 3:16 Greatest Hits, Vol. Il (1978 - 1985) (Disc 2)
19 ™ The Longest Time Billy Joel 3:36 Greatest Hits, Vol. Il (1978 - 1985) (Disc 2)
20 ¥ Atomic Blondie 3:50 Atomic: The Very Best Of Blondie
21 ™ Sunday Girl Blondie 3:15 Atomic: The Very Best Of Blondie
22 ¥ Call Me Blondie 3:33 Atomic: The Very Best Of Blondie
23 ™ Dreaming Blondie 3:06 Atomic: The Very Best Of Blondie
24 ¥ Hurricane Bob Dylan 8:32 Desire
25 ™ The Times They Are A-Changin' Bob Dylan 3:17 Greatest Hits
26 ¥ Livin' On A Prayer Bon Jovi 4:11 Cross Road
27 ™ Beds Of Roses Bon Jovi 6:35 Cross Road
28 ¥ Runaway Bon Jovi 3:53 Cross Road
29 ™ Rasputin (Extended Mix) Boney M 5:50 Greatest Hits |
30 ¥ Have You Ever Seen The Rain Bonnie Tyler 4:10 Faster Than The Speed Of Night ‘
31 ™ Total Eclipse Of The Heart Bonnie Tyler 7:02 Faster Than The Speed Of Night
32 ¥ Straight From The Heart Bonnie Tyler 3:41 Faster Than The Speed Of Night
33 # Holding Out For A Hero Bonny Tyler 5:49 Meat Loaf And Friends
34 ~ Dancing In The Dark © Bruce Springsteen @ 4:05 Born In The U.S.A.
35 ™ Thunder Road Bruce Springsteen 4:51 Born To Run
36 ™ Born To Run Bruce Springsteen 4:30 Born To Run
37 # Jungleland Bruce Springsteen 9:34 Born To Run :
20 2 Tieol Tiienl Tiicnl (To €. i Tho Ducdc 3.£7 Frcencs Miman Tho Coavndeeacle (Mice) [

) <>

Sorting applications

Obvious applications.
* Organize an MP3 library.
» Display Google PageRank results.
» List RSS news items in reverse chronological order.

Some problems become easier once elements are sorted.
» |dentify statistical outliers.
* Binary search in a database.
« Remove duplicates in a mailing list.

Non-obvious applications.
« Convex hull.

Closest pair of points.

Interval scheduling / interval partitioning.

Minimum spanning trees (Kruskal's algorithm).

Scheduling to minimize maximum lateness or average completion time.

Mergesort

* Recursively sort left half.
« Recursively sort right hallf.
* Merge two halves to make sorted whole.

First Draft

ofa
S Report on the
EDVAC

John von Neumann

input

sort left half

A G L 0) R

sort right half

merge results

A G H I L M 0] R S T

Merging

Goal. Combine two sorted lists A and B into a sorted whole C.
* Scan A and B from left to right.
* Compare a; and b,.
* If a; < b;, append a; to C (no larger than any remaining element in B).
* If a; > bj, append b; to C (smaller than every remaining element in A).

sorted list A sorted list B

ai 18 b 17 23

merge to form sorted list C

2 3 / 10 11

A useful recurrence relation

Def. T(n) = max number of compares to mergesort a list of size < n.
Note. T(n) is monotone nondecreasing.

Mergesort recurrence.

0 ifn=1
I(n) < T([n/2]) + T(|n/2]) + n otherwise

Solution. T(n) is O(n log, n).

Assorted proofs. We describe several ways to prove this recurrence.
Initially we assume » is a power of 2 and replace < with =.

Divide-and-conquer recurrence: proof by recursion tree

Proposition. If T(n) satisfies the following recurrence, then T'(n) = n log; n.

N\

0 ifn=1 isaaS Spljnr\?vle?rgorf] 2
T(n) = .
2T(n/2) + n otherwise
Pf 1.
T'(n) n =n
T(nl/2) T(n/2) 2 (n/2) = n
T(n/4) T(n/4) T(n/4) T(n/4) 4 (n/4) ~n

T(n/8) Tn/8) Twm/8) Tm/8 Tm/8) Tmn/8) Twm/8) T(n/8Y) 8 (n/8) = n

T(n)=nlgn

Proof by induction

Proposition. If T(n) satisfies the following recurrence, then T'(n) = n log; n.

. 0 ifn=1
() = 2T(n/2) + n otherwise

Pf 2. [by induction on n]
* Base case: whenn=1, T(1) = 0.
 Inductive hypothesis: assume T(n) = n log, n.
e Goal: show that T(2r) = 2nlog, (2n).

T(2n)

2T(n) +2n
= 2nlogon +2n
= 2n(log2(2n)—1) +2n

= 2nlog>(2n). =

N\

assuming n
is a power of 2

10

5. DIVIDE AND CONQUER

» counting inversions

\A\qnul Jesiqr

I\ JON KLEINBERG - EVA TARDOS
\

SECTION 5.3

Counting inversions

Music site tries to match your song preferences with others.
* You rank n songs.
* Music site consults database to find people with similar tastes.

Similarity metric: number of inversions between two rankings.
* My rank: 1,2, ..., n.
* Your rank: ay,a,, ..., a,.

* Songs i and; are inverted if i < j, butq; > a;.

A8 lclole
e 1 2 3 4 5

m

3 4 2 5

you 1

2 inversions: 3-2,4-2

Brute force: check all ®(#?) pairs.

Counting inversions: applications

* Voting theory.

» Collaborative filtering.

* Measuring the "sortedness” of an array.

« Sensitivity analysis of Google's ranking function.
« Rank aggregation for meta-searching on the Web.

 Nonparametric statistics (e.g., Kendall's tau distance).

Rank Aggregation Methods for the Web

Cynthia Dwork- Ravi Kumart Moni Naor* D. Sivakumar?

ABSTRACT

We consider the problem of combining ranking results from
various sources. In the context of the Web, the main ap-
plications include building meta-search engines, combining
ranking functions, selecting documents based on multiple
criteria, and improving search precision through word asso-
ciations. We develop a set of techniques for the rank aggre-
gation problem and compare their performance to that of
well-known methods. A primary goal of our work is to de-
sign rank aggregation techniques that can effectively combat
“spam,” a serious problem in Web searches. Experiments
show that our methods are simple, efficient, and effective.

Keywords: rank aggregation, ranking functions, meta-
search, multi-word queries, spam

14

Counting inversions: divide-and-conquer

Divide: separate list into two halves 4 and B.

Conquer: recursively count inversions in each list.

Return sum of three counts.

input

1 5 4 8 10 2 6 9 3 7/

count inversions in left half A count inversions in right half B
1 5 4 8 10 2 6 9 3 7
5-4 6-3 9-3 9-7

count inversions (a, b) withac Aand b B

1 5 4 8 10 2 6 9 3 7

4-2 4-3 5-2 5-3 8-2 8-3 8-6 8-7 10-2 10-3 10-6 10-7 10-9

output1 + 3 + 13 =17

Combine: count inversions (a, b) with a € 4 and b € B.

15

Counting inversions: how to combine two subproblems?

Q. How to count inversions (a, b) with a €4 and b € B?
A. Easy if 4 and B are sorted!

Warmup algorithm.
* Sort 4 and B.
* For each element b € B,
- binary search in 4 to find how elements in 4 are greater than 5.

list A list B

7/ 10 18 3 14 17 23 2 11 16
sort A sort B

3 7 10 14 18 2 11 16 17 23

binary search to count inversions (a, b) witha< Aand b € B

3 / 10 14 18 2 11 16 17 23

5 2 1 1 0

Counting inversions: how to combine two subproblems?

Count inversions (a, b) with a €4 and b € B, assuming 4 and B are sorted.
* Scan 4 and B from left to right.
* Compare a; and b,.

If a; < bj, then a; is not inverted with any element left in B.

If a; > bj, then b; is inverted with every element left in 4.
Append smaller element to sorted list C.

count inversions (a, b) withac Aand b B

ai 18 b 17 23

t 52 4

merge to form sorted list C

2 3 / 10 11

Counting inversions: divide-and-conquer algorithm implementation

Input. List L.
Output. Number of inversions in L and sorted list of elements L'.

SORT-AND-COUNT (L)

IF list L has one element
RETURN (0, L).

DIVIDE the list into two halves 4 and B.
(74 , A) «— SORT-AND-COUNT(A).
(r8 , B) «— SORT-AND-COUNT(B).
(748 , L") «— MERGE-AND-COUNT(4, B).

RETURN (r4+rg+rag, L")

18

Counting inversions: divide-and-conquer algorithm analysis

Proposition. The sort-and-count algorithm counts the number of inversions
in a permutation of size n in O(n log n) time.

Pf. The worst-case running time T(n) satisfies the recurrence:

T(n) = T([n/2]) + T(|n/2]) + ®(n) otherwise

19

5. DIVIDE AND CONQUER

» closest pair of points

\A\qnul Desi

I\ JON KLEINBERG - EVA TARDOS
\

SECTION 5.4

Closest pair of points

Closest pair problem. Given n points in the plane, find a pair of points
with the smallest Euclidean distance between them.

Fundamental geometric primitive.
« Graphics, computer vision, geographic information systems,
molecular modeling, air traffic control.

» Special case of nearest neighbor, Euclidean MST, Voronoi.

N /
—

fast closest pair inspired fast algorithms for these problems

21

Closest pair of points

Closest pair problem. Given n points in the plane, find a pair of points
with the smallest Euclidean distance between them.

Brute force. Check all pairs with ©(#2) distance calculations.
1d version. Easy O(nlog n) algorithm if points are on a line.

Nondegeneracy assumption. No two points have the same x-coordinate.

Closest pair of points: first attempt

Sorting solution.
* Sort by x-coordinate and consider nearby points.
* Sort by y-coordinate and consider nearby points.

23

Closest pair of points: first attempt

Sorting solution.

* Sort by x-coordinate and consider nearby points.
* Sort by y-coordinate and consider nearby points.

24

Closest pair of points: second attempt

Divide. Subdivide region into 4 quadrants.

25

Closest pair of points: second attempt

Divide. Subdivide region into 4 quadrants.

Obstacle. Impossible to ensure n/4 points in each piece.

26

Closest pair of points: divide-and-conquer algorithm

Divide: draw vertical line L so that n/2 points on each side.
Conquer: find closest pair in each side recursively.
Combine: find closest pair with one point in each side.

Return best of 3 solutions.

AN

seems like O(N?2)

27

How to find closest pair with one point in each side?

Find closest pair with one point in each side, assuming that distance < é.

* Observation: only need to consider points within § of line L.

28

How to find closest pair with one point in each side?

Find closest pair with one point in each side, assuming that distance < é.
* Observation: only need to consider points within § of line L.
e Sort points in 28-strip by their y-coordinate.
* Only check distances of those within 11 positions in sorted list!

\whyll?

)

29

How to find closest pair with one point in each side?

Def. Let s; be the point in the 2 d-strip, with the i smallest y-coordinate.

Claim. If li—jl = 12, then the distance .
between s; and s; is at least 0. @ «— |
Pf. o
* No two points lie in same !4 6-by-14 6 box. O P NI N e
« Two points at least 2 rows apart /20
have distance = 2 (14). = 2rows | ==mes """"" 7 """
029 o ol 140
v _____ o U
I I %X
> @ | @
Fact. Claim remains true if we replace 12 with7. ----- Rl R R
(26)
(25)

Closest pair of points: divide-and-conquer algorithm

CLOSEST-PAIR (p1, p2, ..., Pn)

Compute separation line L such that half the points «—— O(nlogn)
are on each side of the line.

01 <— CLOSEST-PAIR (points in left half).
8, < CLOSEST-PAIR (points in right half). 21w/
O < min{0;,0d }.

Delete all points further than 0 from line L. «— On)

Sort remaining points by y-coordinate. «—— O(nlog n)

Scan points in y-order and compare distance between
each point and next 11 neighbors. If any of these — O
distances is less than 0, update 0.

RETURN 0.

31

Closest pair of points: analysis

Theorem. The divide-and-conquer algorithm for finding the closest pair of
points in the plane can be implemented in O log? n) time.

(1) ifn=1
T(n) = T([n/2]) + T(|n/2]) + O(nlogn) otherwise

32

Improved closest pair algorithm

Q. How to improve to O(nlogn)?
A. Yes. Don't sort points in strip from scratch each time.
* Each recursive returns two lists: all points sorted by x-coordinate,
and all points sorted by y-coordinate.
* Sort by merging two pre-sorted lists.

Theorem. [Shamos 1975] The divide-and-conquer algorithm for finding the
closest pair of points in the plane can be implemented in O(n log n) time.

y (1) itn=1
: I(n) = T([n/2]) + T(ln/2]) + O@) otherwise

Note. See SECTION 13.7 for a randomized O(n) time algorithm.

N\

not subject to lower bound

since it uses the floor function 33

