
SECTION 6.7

6. DYNAMIC PROGRAMMING II

‣ sequence alignment

‣ Hirschberg's algorithm

‣ Bellman-Ford algorithm

‣ distance vector protocols

‣ negative cycles in a digraph

Sequence alignment in linear space

Theorem. There exist an algorithm to find an optimal alignment in O(mn)
time and O(m + n) space.

・Clever combination of divide-and-conquer and dynamic programming.

・Inspired by idea of Savitch from complexity theory.

Programming G. Manacher
Techniques Editor

A Linear Space
Algorithm for
Computing Maximal
Common Subsequences
D.S . H i r s c h b e r g
P r i n c e t o n U n i v e r s i t y

The problem of finding a longest common subse-
quence of two strings has been solved in quadratic time
and space. An algorithm is presented which will solve
this problem in quadratic time and in linear space.

Key Words and Phrases: subsequence, longest
common subsequence, string correction, editing

CR Categories: 3.63, 3.73, 3.79, 4.22, 5.25

Introduction

The problem of finding a longest common subse-
quence of two strings has been solved in quadratic time
and space [1, 3]. For strings of length 1,000 (assuming
coefficients of 1 microsecond and 1 byte) the solution
would require 106 microseconds (one second) and 106
bytes (1000K bytes). The former is easily accommo-
dated, the latter is not so easily obtainable. I f the
strings were of length 10,000, the problem might not be
solvable in main memory for lack of space.

We present an algorithm which will solve this prob-
lem in quadratic time and in linear space. For example,
assuming coefficients of 2 microseconds and 10 bytes,
for strings of length 1,000 we would require 2 seconds
and 10K bytes; for strings of length 10,000 we would
require a little over 3 minutes and 100K bytes.

String C = c~c2 . . . cp is a subsequence of string
Copyright © 1975, Association for Computing Machinery, Inc.

General permission to republish, but not for profit, all or part
of this material is granted provided that ACM's copyright notice
is given and that reference is made to the publication, to its date
of issue, and to the fact that reprinting privileges were granted
by permission of the Association for Computing Machinery.

Research work was supported in part by NSF grant GJ-30126
and National Science Foundation Graduate Felolwship. Author's
address: Department of Electrical Engineering, Princeton Uni-
versity, Princeton, NJ 08540.

A = axa2 . . . am if and only if there is a mapping F:
{1, 2, . . . , p} ~ {1, 2, . . . , m} such that f(i) = k only
if c~ is ak and F is a monotone strictly increasing func-
tion (i.e. F(i) = u, F (j) = v, and i < j imply that
u < v) .

String C is a c o m m o n subsequence of strings A and B
if and only if C is a subsequence of A and C is a subse-
quence of B.

The problem can be stated as follows: Given strings
A = aia.2.. "am and B = bxb2 . . . bn (over alphabet Z),
find a string C = ClC2. . .cp such that C, is a common
subsequence of A and B and p is maximized.

We call C an example of a m a x i m a l c o m m o n subse-
quence.

Nota t ion . For string D = dld2. • • dr, Dk t is dkdk+l. • • d,
i f k < t ; d k d k _ x . . . d , i f k >__ t. When k > t, we shall
write]3kt so as to make clear that we are referring to a
"reverse substring" of D.

L(i , j) is the maximum length possible of any com-
mon subsequence of Ax~ and B~s.

x[lY is the concatenation of strings x and y.
We present the algorithm described in [3], which

takes quadratic time and space.

Algorithm A

Algorithm A accepts as input strings A~m and Bx.
and produces as output the matrix L (where the ele-
ment L(i , j) corresponds to our notation of maximum
length possible of any common subsequence of Axl and
B.) .

ALGA (m, n, A, B, L)
1. Initialization: L(i, 0) ~ 0 [i=0...m];

L(O,j) +-- 0 [j=0...n];
2. for i +-- 1 to m do

begin
3. for j ~- 1 to n do

if A (i) = B(j) then L(i, j) ~- L(i-- 1, j - - 1) "k 1
else L(i , j) ~-- max{L(i, j--1), L(i-- I , j)}

end

Proof of Correctness of Algorithm A
To find L(i , j) , let a common subsequence of that

length be denoted by S(i , j) = ClC2. . .cp. I f al = bj,
we can do no better than by taking cp = a~ and looking
for c l . . . c p _ l as a common subsequence of length
L(i , j) -- 1 of strings AI,~-1 and B1.i-x. Thus, in this
case, L (i , j) = L (i - 1 , j - 1) -+- 1.

I f ai ~ bs, then cp is ai, b;, or neither (but not both).
I f cp is a~, then a solution C to problem (A~, B~j) [writ-
ten P(i, j)] will be a solution to P(i , j - 1) since bj is
not used. Similarly, if cp is bi, then we can get a solu-
tion to P(i , j) by solving P (i - - 1, j) . I f c~ is neither,
then a solution to either P(i - - 1,j) or P (i , j - - 1) will
suffice. In determining the length of the solution, it is
seen that L(i , j) [corresponding to P(i, j)] will be the
maximum o f L (i - - 1 , j) and L (i , j - - 1). []

341 Communications June 1975
of Volume 18
the ACM Number 6

10

Edit distance graph.

・Let f (i, j) be shortest path from (0,0) to (i, j).

・Lemma: f (i, j) = OPT(i, j) for all i and j.

Hirschberg's algorithm

i-j

m-n

x1

x2

y1

x3

y2 y3 y4 y5 y6

ε

ε

0-0

δ

δ

€

αxi y j

11

Edit distance graph.

・Let f (i, j) be shortest path from (0,0) to (i, j).

・Lemma: f (i, j) = OPT(i, j) for all i and j.

Pf of Lemma. [by strong induction on i + j]

・Base case: f (0, 0) = OPT (0, 0) = 0.

・Inductive hypothesis: assume true for all (i', j') with i' + j' < i + j.

・Last edge on shortest path to (i, j) is from (i – 1, j – 1), (i – 1, j), or (i, j – 1).

・Thus,

Hirschberg's algorithm

i-j

δ

δ

€

αxi y j

12

f(i, j) = min{�xiyj + f(i � 1, j � 1), � + f(i � 1, j), � + f(i, j � 1)}

= min{�xiyj + OPT (i � 1, j � 1), � + OPT (i � 1, j), � + OPT (i, j � 1)}

= OPT (i, j)

f(i, j) = min{�xiyj + f(i � 1, j � 1), � + f(i � 1, j), � + f(i, j � 1)}

= min{�xiyj + OPT (i � 1, j � 1), � + OPT (i � 1, j), � + OPT (i, j � 1)}

= OPT (i, j)

f(i, j) = min{�xiyj + f(i � 1, j � 1), � + f(i � 1, j), � + f(i, j � 1)}

= min{�xiyj + OPT (i � 1, j � 1), � + OPT (i � 1, j), � + OPT (i, j � 1)}

= OPT (i, j) ▪

Edit distance graph.

・Let f (i, j) be shortest path from (0,0) to (i, j).

・Lemma: f (i, j) = OPT(i, j) for all i and j.

・Can compute f (•, j) for any j in O(mn) time and O(m + n) space.

Hirschberg's algorithm

i-j

m-n

0-0

j

x1

x2

y1

x3

y2 y3 y4 y5 y6

ε

ε

13

Edit distance graph.

・Let g (i, j) be shortest path from (i, j) to (m, n).

・Can compute by reversing the edge orientations and inverting the roles

of (0, 0) and (m, n).

i-j

Hirschberg's algorithm

m-n

0-0

δ

δ

x1

x2

y1

x3

y2 y3 y4 y5 y6

ε

ε

i-j

14

�xi+1yj+1

Edit distance graph.

・Let g (i, j) be shortest path from (i, j) to (m, n).

・Can compute g(•, j) for any j in O(mn) time and O(m + n) space.

Hirschberg's algorithm

i-j

m-n

0-0

j

x1

x2

y1

x3

y2 y3 y4 y5 y6

ε

ε

15

Observation 1. The cost of the shortest path that uses (i, j) is f (i, j) + g(i, j).

Hirschberg's algorithm

i-j

m-n

0-0

x1

x2

y1

x3

y2 y3 y4 y5 y6

ε

ε

16

Observation 2. let q be an index that minimizes f (q, n/2) + g (q, n/2).
Then, there exists a shortest path from (0, 0) to (m, n) uses (q, n/2).

Hirschberg's algorithm

i-j

m-n

0-0

n / 2

qx1

x2

x3

ε

y1 y2 y3 y4 y5 y6ε

17

Divide. Find index q that minimizes f (q, n/2) + g(q, n/2); align xq and yn / 2.
Conquer. Recursively compute optimal alignment in each piece.

Hirschberg's algorithm

i-j

0-0

m-n

x1

x2

y1

x3

y2 y3 y4 y5 y6

ε

ε

n / 2

q

18

Theorem. Let T(m, n) = max running time of Hirschberg's algorithm on

strings of length at most m and n. Then, T(m, n) = O(m n log n).

Pf. T(m, n) ≤ 2 T(m, n / 2) + O(m n)
 ⇒ T(m, n) = O(m n log n).

Remark. Analysis is not tight because two subproblems are of size

(q, n/2) and (m – q, n / 2). In next slide, we save log n factor.

Hirschberg's algorithm: running time analysis warmup

19

Theorem. Let T(m, n) = max running time of Hirschberg's algorithm on

strings of length at most m and n. Then, T(m, n) = O(m n).

Pf. [by induction on n]

・O(m n) time to compute f (•, n / 2) and g (•, n / 2) and find index q.

・T(q, n / 2) + T(m – q, n / 2) time for two recursive calls.

・Choose constant c so that:

・Claim. T(m, n) ≤ 2 c m n.

・Base cases: m = 2 or n = 2.

・Inductive hypothesis: T(m, n) ≤ 2 c m n for all (m', n') with m' + n' < m + n.

Hirschberg's algorithm: running time analysis

20

T(m, n) ≤ T(q, n / 2) + T(m – q, n / 2) + c m n

≤ 2 c q n / 2 + 2 c (m – q) n / 2 + c m n

= c q n + c m n – c q n + c m n

= 2 c m n ▪

T(m, 2) ≤ c m
T(2, n) ≤ c n
T(m, n) ≤ c m n + T(q, n / 2) + T(m – q, n / 2)

