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Sequence alignment in linear space

Theorem. There exist an algorithm to find an optimal alignment in O(mn)
time and O(m + n) space.
* Clever combination of divide-and-conquer and dynamic programming.
* Inspired by idea of Savitch from complexity theory.
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The problem of finding a longest common subse-
quence of two strings has been solved in quadratic time
and space. An algorithm is presented which will solve
this problem in quadratic time and in linear space.
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Hirschberg's algorithm

Edit distance graph.
* Let f(i,j) be shortest path from (0,0) to (i, ).
 Lemma: f(i,j)= OPT(,j) for all i and ;.
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Hirschberg's algorithm

Edit distance graph.
* Let f(i,j) be shortest path from (0,0) to (i, ).
 Lemma: f(i,j)= OPT(,j) for all i and ;.

Pf of Lemma. [ by strong induction on i+ ]
* Base case: f(0,0)=OPT(0,0)=0.
* Inductive hypothesis: assume true for all (i, ;") with '+ < i+].
* Last edge on shortest path to (i,)) is from (i1, j-1), (i—1, j), or (i, j—1).
* Thus,

= min{ag,y, +OPT(i—1,j—1), 6 +OPT(i—1,j), 6 +OPT(i,j —1)}




Hirschberg's algorithm

Edit distance graph.
* Let f(i,j) be shortest path from (0,0) to (i, ).
* Lemma: f(i,j) = OPI(i,j) for all i and .
* Can compute f (e, j) for any j in O(mn) time and O(m + n) space.
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Hirschberg's algorithm

Edit distance graph.
* Let g(i,/) be shortest path from (i, ) to (m, n).
« Can compute by reversing the edge orientations and inverting the roles
of (0, 0) and (m, n).




Hirschberg's algorithm

Edit distance graph.
* Let g(i,/) be shortest path from (i, ) to (m, n).
* Can compute g(e, j) for any j in O(mn) time and O(m + n) space.
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Hirschberg's algorithm

Observation 1. The cost of the shortest path that uses (i, /) is f(i, ) + g(i, j).
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Hirschberg's algorithm

Observation 2. let ¢ be an index that minimizes f(q, n/2) + g (g, n/2).
Then, there exists a shortest path from (0, 0) to (m, n) uses (g, n/2).
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Hirschberg's algorithm

Divide. Find index g that minimizes f(q, n/2) + g(q, n/2); align x, and y, ,,.
Conquer. Recursively compute optimal alignment in each piece.




Hirschberg's algorithm: running time analysis warmup

Theorem. Let T(m, n) = max running time of Hirschberg's algorithm on
strings of length at most m and n. Then, T(m, n) = O(mn log n).

Pf. T(m,n) < 2T(m,n/2) + O@mn)
= T(m,n)= O(m nlog n).

Remark. Analysis is not tight because two subproblems are of size
(g, n/2) and (m —q,n/2). In next slide, we save log n factor.



Hirschberg's algorithm: running time analysis

Theorem. Let T(m, n) = max running time of Hirschberg's algorithm on
strings of length at most m and n. Then, T(m, n) = O(mn).

Pf. [ by induction on n ]
* O(mn) time to compute f(e, n/2) and g(e, n/2) and find index g.
T(g,n/2)+ T(m—q,n/2) time for two recursive calls.
Choose constant ¢ so that: T(m,2) < cm
T2,n) =< cn
T(m,n) <= cmn+T(g,n/2)+T(m—-qg,n/?2)

Claim. T(m,n) < 2cmn.
* Base cases: m=2 or n=2.

Inductive hypothesis: T(m,n) < 2cmn for all m’, n) with m’+n' < m +n.
Tm,n) = T(q,n/2)+T(m—-q,n/2)+cmn
< 2cqnl/2 +2c(m—-q)n/2 + cmn
= cqgn + cmn — cqn + cmn

= 2cmn =
20



