
SECTION 6.7

6.  DYNAMIC PROGRAMMING II

‣ sequence alignment

‣ Hirschberg's algorithm

‣ Bellman-Ford algorithm

‣ distance vector protocols 

‣ negative cycles in a digraph



Sequence alignment in linear space

Theorem.  There exist an algorithm to find an optimal alignment in O(mn) 
time and O(m + n) space.

・Clever combination of divide-and-conquer and dynamic programming.

・Inspired by idea of Savitch from complexity theory.
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Introduction 

The problem of  finding a longest common subse- 
quence of two strings has been solved in quadratic time 
and space [1, 3]. For  strings of  length 1,000 (assuming 
coefficients of  1 microsecond and 1 byte) the solution 
would require 106 microseconds (one second) and 106 
bytes (1000K bytes). The former is easily accommo- 
dated, the latter is not so easily obtainable. I f  the 
strings were of length 10,000, the problem might not be 
solvable in main memory  for lack of space. 

We present an algorithm which will solve this prob- 
lem in quadratic time and in linear space. For  example, 
assuming coefficients of  2 microseconds and 10 bytes, 
for strings of  length 1,000 we would require 2 seconds 
and 10K bytes; for strings of  length 10,000 we would 
require a little over 3 minutes and 100K bytes. 

String C = c~c2 . . . cp  is a subsequence  of  string 
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A = axa2 . . . am if and only if there is a mapping F: 
{1, 2, . . . ,  p} ~ {1, 2, . . . ,  m} such that f( i)  = k only 
if c~ is ak and F is a monotone  strictly increasing func- 
tion (i.e. F(i)  = u, F ( j )  = v, and i < j imply that  
u < v ) .  

String C is a c o m m o n  subsequence  of  strings A and B 
if and only if C is a subsequence of  A and C is a subse- 
quence of B. 

The problem can be stated as follows: Given strings 
A = aia.2.. "am and B = bxb2 . . . bn  (over alphabet Z), 
find a string C = ClC2. . .cp such that C, is a common 
subsequence of A and B and p is maximized. 

We call C an example of  a m a x i m a l  c o m m o n  subse-  
quence.  

Nota t ion .  For  string D = dld2. • • dr, Dk t is dkdk+l. • • d, 
i f k  < t ; d k d k _ x . . . d ,  i f k  >__ t. When k > t, we shall 
write ]3kt so as to make clear that we are referring to a 
"reverse substring" of  D. 

L(i ,  j )  is the maximum length possible of  any com- 
mon subsequence of Ax~ and B~s. 

x[ lY is the concatenation of strings x and y. 
We present the algorithm described in [3], which 

takes quadratic time and space. 

Algorithm A 

Algorithm A accepts as input strings A~m and Bx. 
and produces as output  the matrix L (where the ele- 
ment L(i ,  j )  corresponds to our notation of maximum 
length possible of  any common subsequence of Axl and 
B. ) .  

ALGA (m, n, A, B, L) 
1. Initialization: L(i, 0) ~ 0 [i=0...m]; 

L(O,j) +-- 0 [j=0...n]; 
2. for i +-- 1 to m do 

begin 
3. for j ~- 1 to n do 

if A (i) = B(j) then L(i, j )  ~- L(i--  1, j - -  1) "k 1 
else L(i , j )  ~-- max{L(i, j--1),  L(i-- I , j)} 

end 

Proof  of  Correctness of  Algorithm A 
To find L(i ,  j ) ,  let a common subsequence of that  

length be denoted by S(i ,  j )  = ClC2. . .cp.  I f  al = bj, 
we can do no better than by taking cp = a~ and looking 
for c l . . . c p _ l  as a common subsequence of  length 
L(i ,  j)  -- 1 of  strings AI,~-1 and B1.i-x. Thus, in this 
case, L ( i , j )  = L ( i -  1 , j -  1) -+- 1. 

I f  ai ~ bs, then cp is ai, b;, or neither (but not both). 
I f  cp is a~, then a solution C to problem (A~, B~j) [writ- 
ten P(i,  j)]  will be a solution to P(i ,  j - 1) since bj is 
not used. Similarly, if cp is bi, then we can get a solu- 
tion to P(i ,  j )  by solving P ( i  - -  1, j ) .  I f  c~ is neither, 
then a solution to either P( i  - -  1,j)  or P ( i , j  - -  1) will 
suffice. In determining the length of the solution, it is 
seen that L(i ,  j )  [corresponding to P(i,  j)]  will be the 
maximum o f L ( i - -  1 , j )  and L ( i , j - -  1). [] 
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Edit distance graph.

・Let f (i, j) be shortest path from (0,0) to (i, j).

・Lemma:  f (i, j) = OPT(i, j) for all i and j.

Hirschberg's algorithm
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Edit distance graph.

・Let f (i, j) be shortest path from (0,0) to (i, j).

・Lemma:  f (i, j) = OPT(i, j) for all i and j.

Pf of Lemma.  [ by strong induction on i + j ]

・Base case:  f (0, 0) = OPT (0, 0) = 0.

・Inductive hypothesis: assume true for all (i', j') with  i' + j'  <  i + j.

・Last edge on shortest path to (i, j) is from (i – 1,  j – 1), (i – 1,  j), or (i,  j – 1).

・Thus,  

Hirschberg's algorithm
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f(i, j) = min{�xiyj + f(i � 1, j � 1), � + f(i � 1, j), � + f(i, j � 1)}

= min{�xiyj + OPT (i � 1, j � 1), � + OPT (i � 1, j), � + OPT (i, j � 1)}

= OPT (i, j)

f(i, j) = min{�xiyj + f(i � 1, j � 1), � + f(i � 1, j), � + f(i, j � 1)}

= min{�xiyj + OPT (i � 1, j � 1), � + OPT (i � 1, j), � + OPT (i, j � 1)}

= OPT (i, j)

f(i, j) = min{�xiyj + f(i � 1, j � 1), � + f(i � 1, j), � + f(i, j � 1)}

= min{�xiyj + OPT (i � 1, j � 1), � + OPT (i � 1, j), � + OPT (i, j � 1)}

= OPT (i, j) ▪



Edit distance graph.

・Let f (i, j) be shortest path from (0,0) to (i, j).

・Lemma:  f (i, j) = OPT(i, j) for all i and j.

・Can compute f (•, j) for any j in O(mn) time and O(m + n) space.

Hirschberg's algorithm
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Edit distance graph.

・Let g (i, j) be shortest path from (i, j) to (m, n).

・Can compute by reversing the edge orientations and inverting the roles 

of (0, 0) and (m, n).
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Hirschberg's algorithm
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Edit distance graph.

・Let g (i, j) be shortest path from (i, j) to (m, n).

・Can compute g(•,  j) for any j in O(mn) time and O(m + n) space.

Hirschberg's algorithm
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Observation 1.  The cost of the shortest path that uses (i, j) is f (i,  j) + g(i,  j). 

Hirschberg's algorithm
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Observation 2.  let q be an index that minimizes f (q, n/2) + g (q, n/2).
Then, there exists a shortest path from (0, 0) to (m, n) uses (q, n/2).

Hirschberg's algorithm
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Divide.  Find index q that minimizes f (q, n/2) + g(q, n/2); align xq and yn / 2.
Conquer.  Recursively compute optimal alignment in each piece.

Hirschberg's algorithm
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Theorem.  Let T(m, n) = max running time of Hirschberg's algorithm on 

strings of length at most m and n. Then, T(m, n) = O(m n log n).

Pf.   T(m, n)  ≤   2 T(m, n / 2)  +  O(m n)
                      ⇒   T(m, n) =  O(m n log n).

Remark.  Analysis is not tight because two subproblems are of size

(q, n/2) and (m – q, n / 2).  In next slide, we save log n factor.

Hirschberg's algorithm:  running time analysis warmup
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Theorem.  Let T(m, n) = max running time of Hirschberg's algorithm on 

strings of length at most m and n. Then, T(m, n) = O(m n).

Pf.  [ by induction on n ]

・O(m n) time to compute f ( •,  n / 2) and g ( •,  n / 2) and find index q.

・T(q, n / 2) + T(m – q, n / 2) time for two recursive calls. 

・Choose constant c so that:

・Claim.  T(m, n)   ≤   2 c m n.

・Base cases: m = 2 or n = 2. 

・Inductive hypothesis:  T(m, n)    ≤   2 c m n for all (m', n') with m' + n'  <  m + n.

Hirschberg's algorithm:  running time analysis
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T(m, n) ≤ T(q, n / 2) + T(m – q, n / 2) + c m n

≤ 2 c q n / 2  +  2 c (m – q) n / 2  +  c m n

= c q n  +  c m n  –  c q n  +  c m n

= 2 c m n  ▪

T(m, 2) ≤ c m
T(2, n) ≤ c n
T(m, n) ≤ c m n + T(q, n / 2) + T(m – q, n / 2)


