2. ALGORITHM ANALYSIS

PEARSON
g

Addison
Wesley

» computational tractability

» asymptotic order of growth

» survey of common running times

Lecture slides by Kevin Wayne
Copyright © 2005 Pearson-Addison Wesley
Copyright © 2013 Kevin Wayne

http://www.cs.princeton.edu/~wayne/kleinberg-tardos

Last updated on Sep 8, 2013 6:19 AM

2. ALGORITHM ANALYSIS

» computational tractability

A\qmll Jesiqr

\ JON KLEINBERG - EVA TARDOS
\

SECTION 2.1

A strikingly modern thought

“ As soon as an Analytic Engine exists, it will necessarily guide the future
course of the science. Whenever any result is sought by its aid, the question

will arise— By what course of calculation can these results be arrived at by

the machine in the shortest time? ” — Charles Babbage (1564)

how many times do you
have to turn the crank?

Analytic Engine

Brute force

Brute force. For many nontrivial problems, there is a natural brute-force
search algorithm that checks every possible solution.

* Typically takes 27 time or worse for inputs of size n.

* Unacceptable in practice.

Polynomial running time

Desirable scaling property. When the input size doubles, the algorithm

should only slow down by some constant factor C.

Def.

An algorithm is poly-time if the above scaling property holds.

There exists constants ¢ > 0 and d > 0 such that
on every input of size n, its running time is bounded <«—— choose C=2¢
by c nd primitive computational steps.

1 :')
von Neumann Nash Godel Cobham Edmonds
(1953) (1955) (1956) (1964) (1965) (1966)

Polynomial running time

We say that an algorithm is efficient if has a polynomial running time.

Justification. It really works in practice!
* In practice, the poly-time algorithms that people develop have low
constants and low exponents.
* Breaking through the exponential barrier of brute force typically
exposes some crucial structure of the problem.

Exceptions. Some poly-time algorithms do have high constants
and/or exponents, and/or are useless in practice.

Map graphs in polynomial time

Mikkel Thorup™

Q. Wh i C h WO u I d yo u p re fe r 20 nloo VS - nl + 002 ln n ? Department of Computer Science, University of Copenhagen

Universitetsparken 1, DK-2100 Copenhagen East, Denmark
mthorup@diku.dk

Abstract

Chen, Grigni, and Papadimitriou (WADS’97 and STOC’98)
have introduced a modified notion of planarity, where two
re a

Worst-case analysis

Worst case. Running time guarantee for any input of size .
* Generally captures efficiency in practice.
* Draconian view, but hard to find effective alternative.

Exceptions. Some exponential-time algorithms are used widely in practice
because the worst-case instances seem to be rare.

A

Optimal I
solution

grep
THEREFORE, 1 AR

e rmaess

simplex algorithm Linux grep k-means algorithm

Types of analyses

Worst case. Running time guarantee for any input of size .
Ex. Heapsort requires at most 2nlog,n compares to sort n elements.

Probabilistic. Expected running time of a randomized algorithm.
Ex. The expected number of compares to quicksort » elements is ~2n In n.

Amortized. Worst-case running time for any sequence of n operations.
Ex. Starting from an empty stack, any sequence of » push and pop
operations takes O(n) operations using a resizing array.

Average-case. Expected running time for a random input of size .

Ex. The expected number of character compares performed by 3-way
radix quicksort on n uniformly random strings is ~ 2# In n.

Also. Smoothed analysis, competitive analysis, ...

Why it matters

Table 2.1 The running times (rounded up) of different algorithms on inputs of
increasing size, for a processor performing a million high-level instructions per second.
In cases where the running time exceeds 10%° years, we simply record the algorithm as
taking a very long time.

n nlog, n n? n’ 1.5" o n!
n=10 < 1 sec < 1 sec < 1 sec < 1 sec < 1 sec < 1 sec 4 sec
n=30 <lsec <lsec <1 sec <1 sec <1 sec 18 min 10%° years
n=>50 < 1 sec < 1 sec < 1sec < 1sec 11 min 36 years very long
n =100 < 1 sec < 1 sec < 1 sec 1 sec 12,892 years 107 years very long

n=1,000 < 1 sec < 1 sec 1 sec 18 min very long very long very long
n = 10,000 < 1 sec < 1 sec 2 min 12 days very long very long very long
n = 100,000 < 1 sec 2 sec 3 hours 32 years very long very long very long
n = 1,000,000 1 sec 20 sec 12 days 31,710 years very long very long very long

2. ALGORITHM ANALYSIS

» asymptotic order of growth

A\qmll Jesiqr

\ JON KLEINBERG - EVA TARDOS
\

SECTION 2.2

Big-Oh notation

Upper bounds. T(n) is O(f(n)) if there exist constants ¢>0 and n, > 0
such that T(n) < ¢ f(n) for all n > n,.
¢ f(n)
Ex. T(n)=32n>+17n+ 1.
* T(n)is O(n?). <— choosec=50,no=1
* T(n) is also O®r?).
* T(n) is neither O(n) nor O(n log n).

T(n)

no n

Typical usage. Insertion makes O(n?) compares to sort n elements.

Alternate definition. T(n) is O(f(n)) if limsup % < o0

11

Notational abuses

Equals sign. O(f(n)) is a set of functions, but computer scientists often write
T(n) = O(f(n)) instead of T(n) € O(f(n)).

Ex. Consider f(n)=5n*> and g(n)=3n?.
* We have f(n) = O3 = g(n).
* Thus, f(n) = g(n).

Domain. The domain of f(n) is typically the natural numbers {0,1,2,... }.
« Sometimes we restrict to a subset of the natural numbers.
Other times we extend to the reals.

Nonnegative functions. When using big-Oh notation, we assume that the

functions involved are (asymptotically) nonnegative.

Bottom line. OK to abuse notation; not OK to misuse it.

12

Big-Omega notation

Lower bounds. T(n) is Q(f(n)) if there exist constants ¢>0 and n, > 0
such that T(n) > ¢ f(n) for all n > n,.
t T(n)
Ex. T(n)=32n>+17n+ 1.
* T(n) is both Q(»n?) and Q(n). <«— choosec=32,no=1
* T(n) is neither Q(»n?) nor Q(n3 log n).

¢ f(n)

no n

Typical usage. Any compare-based sorting algorithm requires Q(n log n)
compares in the worst case.

Meaningless statement. Any compare-based sorting algorithm requires
at least O(n log n) compares in the worst case.

13

Big-Theta notation

Tight bounds. T(n) is O(f(n)) if there exist constants ¢1 >0, c2>0, and n, > 0

such that ci - f(n) < T(n) < 2 - f(n) forall n > n,.

Ex. T(n)=32n*>+17n+1.

* T(n) is O(n?). <«— chooseci=32,c2=50,n0=1

* T(n) is neither ®(n) nor O(n3).

c2 f(n)
T(n)

ci - f(n)

no n

Typical usage. Mergesort makes O(n log n) compares to sort n elements.

14

Asymptotic bounds for some common functions

Polynomials. Let T(n) =ay,+a;n+ ... +a;n? with a;, > 0. Then, T(n) is O(n9).

apo+ain—+...+a nd
0 1 d — ay > 0

no need to specify base
(assuming it is a constant)

Logarithms. ©(log,n) is O(log, n) for any constants a, b >0. «—

Logarithms and polynomials. For every d >0, logn is O(n9).

Exponentials and polynomials. For every r >1 and every d >0, n? is O(r").

TLd

Pf. lIm — = 0

n—oo 1N

16

Big-Oh notation with multiple variables

Upper bounds. T(m,n) is O(f(m, n)) if there exist constants ¢ >0, m, = 0,
and n, = 0 such that T(m,n) < c¢-f(m,n) forall n = ny, and m = m,.

Ex. T(m,n)=32mn?+ 17mn + 32n3.
* T(m,n) is both O(mn? + n3) and O(mn3).
* T(m,n) is neither O(n3) nor O(mn?).

Typical usage. Breadth-first search takes O(m + n) time to find the shortest

path from s to ¢ in a digraph.

17

2. ALGORITHM ANALYSIS

» survey of common running times

A\qmll Jesiqr

\ JON KLEINBERG - EVA TARDOS
\

SECTION 2.4

Linear time: O(n)

Linear time. Running time is proportional to input size.

Computing the maximum. Compute maximum of n numbers a, ...

max <= a.l
for i = 2 to n {
it (a; > max)

MaX <— 4a;

, a

ne

19

Linear time: O(n)

Merge. Combine two sorted lists A=a,,a,,...,a, withB=b,,b,, ..., b, into sorted

whole.

Merged result

A A
AN

///b; B

i=1, j=1
while (both 1lists are nonempty) {
if (a; = b;) append a; to output list and increment i

else append b; to output Tist and increment j

}

append remainder of nonempty list to output list

Claim. Merging two lists of size n takes O(n) time.

Pf. After each compare, the length of output list increases by 1.

20

Linearithmic time: O(n log n)

O(n log n) time. Arises in divide-and-conquer algorithms.

Sorting. Mergesort and heapsort are sorting algorithms that perform

O(n log n) compares.

Largest empty interval. Given n time-stamps x,,...,x, on which copies of a

file arrive at a server, what is largest interval when no copies of file arrive?

O(n log n) solution. Sort the time-stamps. Scan the sorted list in order,
identifying the maximum gap between successive time-stamps.

21

Quadratic time: O(n?)

Ex. Enumerate all pairs of elements.

Closest pair of points. Given a list of n points in the plane (x;,y)), ..., (x,,y,),
find the pair that is closest.

O(n?) solution. Try all pairs of points.

min < (X; - X302 + (y; - Y;y)?
for 1 =1 ton {
for j = i+1 to n {
d < (X5 - x3)2 + (y; - y;)?
if (d < min)
min < d

Remark. Q(n?) seems inevitable, but this is just an illusion. [see Chapter 5]

22

Cubic time: O(n?)

Cubic time. Enumerate all triples of elements.

Set disjointness. Given n sets §,, ..., S, each of which is a subset of
1,2, ...,n, is there some pair of these which are disjoint?

O(n3) solution. For each pair of sets, determine if they are disjoint.

foreach set S; {
foreach other set S; {
foreach element p of S; {

determine whether p also belongs to S;

}
if (no element of S; belongs to S;)

report that S; and S; are disjoint

23

Polynomial time: O(n¥)

Independent set of size k. Given a graph, are there k nodes such that no
two are joined by an edge? AN

k is a constant

O(nk) solution. Enumerate all subsets of k£ nodes.

foreach subset S of k nodes {
check whether S in an independent set
if (S is an independent set)
report S is an independent set

* Check whether S is an independent set takes O(k?) time.

* Number of k element subsets = (n> _nn=Dn=2)x--x@n-k+1) _ n*

k k(k—1)(k—2) x---x1 = gl

* O(k? nk/ k') = O(n*).

\

poly-time for k=17,
but not practical

24

Exponential time

Independent set. Given a graph, what is maximum cardinality of an
independent set?

O(n2 2n) solution. Enumerate all subsets.

S* < ¢
foreach subset S of nodes {
check whether S in an independent set
if (S is largest independent set seen so far)
update S* < S

25

Sublinear time

Search in a sorted array. Given a sorted array A of n numbers, is a given
number x in the array?

O(log n) solution. Binary search.

lo < 1,hi < n

while (1o < hi) {
mid < (lo + hi) / 2
if (x < A[mid]) hi < mid - 1
else if (x > A[mid]) To < mid + 1
else return yes

}

return no

26

