
Real Life Web
Development
Joseph Paul Cohen
joecohen@cs.umb.edu

Index
201 - The code
404 - How to run it?
500 - Your code is broken?
200 - Someone broke into your server?
400 - How are people using your site?
502 - You need to scale?

What is a webserver?

browser->dns->ip->port80->listening socket->

<-socket replies with text

GET / HTTP/1.1
Host: defcon.org

HTTP/1.1 200 OK
Server: lighttpd
Cache-Control: public, max-age=600
Content-Language: en
Connection: keep-alive
Date: Mon, 15 Jul 2013 02:53:06 GMT
Last-Modified: Mon, 15 Jul 2013 01:36:50 GMT
Content-Type: text/html

<html>
….

201 - The code

201 - The code

Write it yourself? Why?

Frameworks vs Solutions

PHP Framework

http://classes.engineering.wustl.edu/cse330/images/f/fc/PHP-Apache_Flowchart.png

+HTML Generation System
+Session Management

Many Libraries
Image, File, pdf,
geo, crypto,
database, ...

Wordpress
Blog Solution

+Plugins can modify everything
+Themes modify public view
+Multiple privilege levels
+Console to manage content
+Tons of plugins (security risks)
+Automatic security updates

Themes make all the difference

Java Servlet

+Web Framework
+HTTP Verb Router
+Listens to socket directly
+Built-In Session System
+JSP (~PHP) or Stream Interface
+Many “containers” (Tomcat, ...)
+Can use Java Libraries

Java Servlet

+Can have service threads running at all times
+Thread and session can both store data
+Single deployable “war” file contains entire site
+Containers can seamlessly scale website
+Can statically analyse code
+Good for large projects

Django
+Model / View / Template Framework
+Model:
 +Database Abstraction
 +Entity Relational Mapping
 +Lazy Queries
+View:
 +Application Code
+Template:
 +Templating Engine
 +Generic CRUD Templates

Django
+Administration Interface
+Schema Migrations (South)
+Middleware

Django

+Lots of “Out Of The Box” Utility
 +Easy CRUD
 +Database Agnostic
 +Entity-Relational Mapping
 +Many Packages e.g. South
 +Program In Python
 +Develop Big Websites Fast

+May Be Overwhelming
 +Many Pieces
 +May Encounter Edge Cases
 +Less Control / Simplified

- Henry Lo
Django Wizard

PHP Slim
Web Framework
+HTTP verb & path router
+Parses path as variables
+Perfect for AJAX interfaces
+Error handling and debugging
+Database abstraction

Database Tools

Most frameworks/solutions
support only a few databases

Complication vs Speed

SQLite > (Postgres || MySQL)

SQLite

Operates on flat file in same thread
Backup is simple (just copy a file)
Data can be in same folder as code
Supports all standard SQL
Command line debugging tool
No indexing

MySQL

MySQL and MariaDB are daemons
Built in authentication. Listens on socket or port.
Provides indexing, fulltext search, and clustering
Deployed everywhere, many Linux packages.
Easy to connect to from any language

PostgreSQL

Similar to MySQL

-MySQL is an open-source PRODUCT.
-Postgres is an open-source PROJECT.

When should you write it yourself?

When should you write it yourself?

Nothing else solves the problem
Can you change the problem?

Existing solutions are bad
You want to learn the problems faced

Google needed this
200Mhz Sun Microsystems Ultra II
300 MHz dual Pentium II
F50 IBM RS/6000
~300GB Storage
~2GB or RAM

What do you need?
Only buy that!

404 - How to run it?

404 - How to run it?

Lower costs means you can run it longer
Do you really want to configure your httpd?
Do you really want to manage your server?

You Manage Managed

Can share IP and server
Maybe no root access

Server operation is assumed
Backups done automatically

Server operator on call

Can install physical server
Can have any internet service
Root access
You must replace parts
You can run any code
You have to set up webserver

500 - Your code is broken?

500 - Your code is broken?

Is it your fault? (+1 Managed Hosting)
Reduce what you can break!
Everything is more complicated than you think!

What did you change? (+1 Source Control)
Did your code change?
Did something happen to your database?

Managed hosting gives
your own IT group!
Know what they can fix
Give them the important info

What server?
What should it do?
What should it not do?

GIT / SVN

Storing your website in GIT or SVN allows you
to see the changes you made before the site
broke.

Commit history helps you

Leaving yourself notes
helps you figure out how
you broke the site

$svn log
$git log

Database Tools

+Command line DB is hard!
+phpMyAdmin installs on your server
+MySQL Workbench and pgAdmin are desktop
clients

phpMyAdmin vs MySQL Workbench

phpMyAdmin only needs to be set up once and
allows administration from anywhere but is slow

Desktop clients allow you to connect to multiple
servers and run faster but need to be installed.
Most have ssh tunneling built in.

200 - Someone broke into your server?

How can you tell?
+ File changes/
+ Strange connections
+ Someone told you

How do you recover?
+ Worst case erase everything

400 - How are people using your site?

What data do you have?
+Access Logs from httpd

+HTTP Header info
+Requested pages

+Track users with cookies and javascript
+Track returning users
+Where they are active on page
+Track mouse movements and which links are clicked

400 - How are people using your site?

Analyze Logs Offline
+Webalizer
+Grep

Javascript based online analysis
+Google Analytics (Pay by giving user data)
+Pwick (You can run yourself)

+Web logs are a very granular and great for debugging
+You can see strange requests very easy

+Error logs provide insight into how your code is working
+Using “tail -f” to follow error logs is useful for development

Google Analytics

Add Javascript to all your pages
You manage less +1
Google can track your users -1

Where are your visitors from?

Where have people been traveling on your site?

Does the browser make a difference?

Does the browser make a difference?

Where are the engaged visitors from? Focus on the referral URL

502 - You need to scale?
What is not scaling?
Bandwidth/CPU/Storage

Caching!

+Set up your server to cache
+Apache mod_cache or mod_file_cache
+ngnix

+Set up your code to cache
+Use HashSets
+memcached

Apache mod_cache, mod_file_cache

mod_cache
+content that has not expired will be cached
+Adjust expire time global or per file

mod_file_cache
+some files never have their handles closed

nginx

Answers requests instead of Apache
+Forwards to apache if dynamic
+Can handle 10k requests in 10mb
+Setup filter for what is dynamic (.php)
+Can forward requests to many servers

Expand to scalable network

+Use dynamic DNS resolution to distribute
+Use Content Delivery Network (CDN)
+Services provided by CloudFlare/Akami

Content Delivery Network (CDN)
+Link static content to CDN network (which uses dynamic DNS)

Web Browser

Web Server

CDN Servers

http://cdn.server.com/image.png

http://server.com/page.html

Caching and dynamic DNS

+Network of Edge servers
+Give up DNS control to service
+Edge servers receive all requests
+Forward if content is dynamic
+Set list of requests to forward
+Transparent to developer

http://www.upenn.
edu/computing/web/central-
host/caching/akamai.png

</talk>

