Representation learning

Deep learning overview, representation learning methods in detail (sammons map, t-sne),
the backprop algorithm in detail, and regularization and its impact on optimization.
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Dim reduction overview

We would like a mapping from R'® (or anything) to R? to
visualize it: aka: encoding, code, embedding, representation

Invertible vs non-invertible:
If we allow for the loss of information we cannot have a lossless reconstruction.

Some methods just preserve distances, no mapping learned.



PCA for dim reduction (quick recap)

nxk mxn ; '
X c R : A c R A_IS thTe elg'genvectors of X such that
x=AA'x, A's columns are orthogonal,
and the columns of A form a basis
which encodes the most variance.
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In 2d data this vector captures the most variance



word2vec

Presented at NeurlPS 2013

Strategy to learn representations for word tokens given their context.

Relevant to problems where context defines concepts (with redundancy) Tomas Mikolov
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What to do with word embeddings?

e \We can compose them to create paragraph embeddings (bag of embeddings).

e Use in place of words for an RNN
e Augment learned representations on small datasets

Study the compositionality of the Study how the meaning between two
learned latent space texts varies (Or hOSpitals, or dOCtOI’S)?
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Token representations

One-hot encoding: binary vector per token

Example:
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word2vec

Context window = 2
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Learning in progress
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The point that is
closest is queen!
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Try it yourself!

https://colab.research.qoogle.com/drive/1VU4mm DThBaQc9t0Cf6ajjHQDEw-Q1H2

<o word2vec.ipynb - Colaboratory x [ES

e <i https://colab.research.go... @ 5’}) U &k %0 Zx ® . 3
& wordzvec.ipynb 8 covent 2 s (@
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https://colab.research.google.com/drive/1VU4mm_DThBaQc9t0Cf6ajjHQDEw-Q1H2

Sammon's map

Described by John W. Sammon in 1969

Method of non-linear dim reduction based on gradient descent.

John W. Sammon

Basic method of preserving distances in a low dim space.

[EEE TRANSACTIONS ON COMPUTERS, VOL. C-18, NO. 5, MAY 1969 401

A Nonlinear Mapping for Data Structure Analysis
JOHN W. SAMMON, JR.

Abstract—An algorithm for the analysis of multivariate data is et us now randomly® choose an initial d-space con-
presented along with some experimental results. The algorithm is o\, ration for the ¥ vectors and denote the configura-
based upon a point mapping of N L-dimensional vectors from the L- Sonras follows:
space to a lower-dimensional space such that the inherent data 10 ¢ :

“structure” is approximately preserved. b ya1 yx1
Index Terms—Clustering, dimensionality reduction, mappings, Y, = [ . il Y, = ‘: . i| D |: : i' 1

multidimensional scaling, multivariate data analysis, nonparametric,

pattern recognition, statistics. Yid Yo Y.



Colab Notebook

https://colab.research.gooqgle.com/drive/1FDJ2FIVINSPYYrNKEW2w48 BuSknhKif



http://www.youtube.com/watch?v=HSsrJC_KCKk
https://colab.research.google.com/drive/1FDJ2FlVfN5PYYrNKEW2w48_BuSknhKif

First: a basic non-linear dimensionality

. 2
reduction C p— Z(d:} — d’L])

Learn a representation that maintains pairwise

distances. 7’<]
k
= distance function (or matrix) = distance computed between
that you want to represent each learned representation
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Sammon's stress = <% Scale discrepancy
ZGI%* d* by true distance.

{'4 <] Z] Small distance =
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Sammon’s stress =

i<j

*k
dij

= distance function (or matrix)
that you want to represent

source d
target d

stress =

torch.pdist (source)
torch.pdist (target)

1
>

(df; — dij)?

2

i< 0]
d;

= distance computed between
each learned representation

(((target d - source d)**2)/(source d+l)) .sum()



pdist

torch.nn.functional.pdist (input, p=2) — Tensor &

Computes the p-norm distance between every pair of row vectors in the input. This is identical to the upper
triangular portion, excluding the diagonal, of torch.norm(input[:, None] - input, dim=2, p=p). This function will be
faster if the rows are contiguous.

If input has shape N X M then the output will have shape %N(N -1).

This function is equivalent to scipy.spatial.distance.pdist(input, ‘minkowski’, p=p) if p € (0, OO) .Whenp =0
it is equivalent to scipy.spatial.distance.pdist(input, ‘hamming’) *M. When p = 00, the closest scipy function is
scipy.spatial.distance.pdist(xn, lambda x, y: np.abs(x - y).max()).

Parameters

e input - input tensor of shape N X M .

e p - p value for the p-norm distance to calculate between each vector pair € [0, oo] .

Output is a non-square (non redundant) distance matrix between vectors




source = torch.Tensor (data.values)
torch.randn (source.shape[0] ,2, requires grad=True)

target

optimizer = torch.optim.SGD ([target], 1r=0.5)
optimizer.zero grad() # get ready for new gradients

source d = torch.pdist(source) # compute distances
target d = torch.pdist(target) # compute distances

stress = (((target d - source_d)**Z)/(source_d+1)).sum()
stress.backward() # compute gradients for target

optimizer.step() # adjust the target tensor



and MF is the “magic factor” which was determined
empirically to be M F~0.3 or 0.4. The partial derivatives
are given by

This paper calls the learning rate the "magic factor" !




Exercise (regularization)

How to control the representation learned?
A AR
Adjust the objective function so that the minimum has g 5 ':
the property you want. ” \3%
(df; — dij)?
> e 4+ > I(y; =6 and y; = 6)d;; 3

i<j ij i<j

dloss += 0.0l1*torch.pdist (target[label==6]) .mean()



Discussion

Simple cases? hard cases?
What does a learning rate over 1 mean?
What are the drawbacks of this sammon's map?

What does regularization change about training?



t-SNE
TL;DR: Sammon's map but distances delay exponentially

pj|z' = conditional probability that x. is next to X, given a Gaussian centered at x.

P 7li Ratio between distances
C = Z KL(F||Q;) = Z Z Pjli log — weighted by source data
- R 95 distance.
Drives p and g to be equal but

only for nearby points.

data space embedding space
P — exp(—||zi — z;|[°/207)) G = exp(—||zi — z;|°))
T s exp(—||zi — x| 2/207)) T Yk exp(— |z — k7))




Setting the o (perplexity)

t-SNE performs a binary search for the value of o. that produces a P, with a fixed

perplexity.

g

Perp(P;) = oH (P,
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Image from: https://www.dataminingapps.com/2019/11/a-refresher-on-t-sne/



Discussion

How does t-SNE differ from sammon's map?

Which distances are meaningful?



Factorized Embeddings

TL;DR: two spaces of non-linear embeddings.
Conditioned on each other to predict data.
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Evaluating sample space

Color represents
expression predicted
when conditioned on

a gene

Value predicted
for entire space

tSNE

Factorized embeddings

Imputed FE

-40

04

03

02

01

00

3\# &
i
-25 0 =3 S0 75 100
rie .
By R
e
0.6 -04 -02 00 0.2

keratin genes

CD8B gene

XIST gene




p(z]z) = gp(2)

p(2)

Latent variable models

We learn a mapping from a latent

Something simple
like a Gaussian

variable z to a complicated x

The conditional prob is modeled by a

neural network and the latent space

where

is a distribution we understand.

p(z, z) = p(x|2)p(z)
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ALI/BIGAN

ICLR 2017. Two papers, same idea.
Matches joint distribution p(x,z).

Trains an encoder and decoder.

Published as a conference paper at ICLR 2017

ADVERSARIALLY LEARNED INFERENCE

Vincent D lin', Ishmael Belghazi', Ben Poole*

Olivier Mastropietro’, Alex Lamb', Martin Arjovsky®

Aaron Courville'!

1 MILA, Université de Montréal, firstname.lastname@umontreal.ca.

2 Neural Dynamics and Computation Lab, Stanford, poole@cs. stanford.edu.
3 New York University, mart inarjovsky@gmail.com.

fCIFAR Fellow.

ABSTRACT

We introduce the adversarially learned inference (ALI) model, which jointly learns
a generation network and an inference network using an adversarial process. The
generation network maps samples from stochastic latent variables to the data space
while the inference network maps training examples in data space to the space
of latent variables. An adversarial game is cast between these two networks and
a discriminative network is trained to distinguish between joint latent/data-space

Vincent Dumoulin Jeff Donahue

Published as a conference paper at ICLR 2017

ADVERSARIAL FEATURE LEARNING

Jeff Donahue Philipp Kriihenbiihl
jdonahue@cs.berkeley.edu philkr@utexas.edu
Computer Science Division Department of Computer Science
University of California, Berkeley University of Texas, Austin
Trevor Darrell

trevor@eecs.berkeley.edu
Computer Science Division
University of California, Berkeley

ABSTRACT

The ability of the Generative Adversarial Networks (GANSs) framework to learn
generative models mapping from simple latent distributions to arbitrarily complex
data distributions has been demonstrated empirically, with compelling results 27
showing that the latent space of such generators captures semantic variation in
the data distribution. Intuitively, models trained to predict these semantic latent
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Matches the joint distribution p(z,x) with q(z,x) using an adversarial loss.

ALI/BIGAN

p(z,X)
features data

Typically a ( ) ‘
Gaussian generates e
points here.
|
|
e
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R S B |
Classifier learns to tell
the difference between
qa(z,x) inputs. Update E and G
so D cannot distinguish.




Quick intro to adversarial distribution matching

Fake
Noise Image Real or Fake?
: ® -
. A——’ o Discriminator
- )

The generator learns
to match the target
distribution to fool the
discriminator

Fake Real




Homework

1) Find a single/multi cell RNA-seq dataset compute a PCA, Sammon's Map,
and t-SNE. Color points by some relevant value.

2) What are the challenges for representation learning?

3)






