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Chapter 1

Radiology and Multi-View



Common X-ray projections/views

PA = PosteroAnterior = BackFront

Image: [Bustos, “PadChest: A Large Chest x-Ray Image Dataset with Multi-Label Annotated Reports.” 2019]

LR

Most common



Ronald Summers
NIH Clinical Center

Released 2017, first large scale chest X-ray dataset 

>100k frontal images released as public domain

Enabled the deep learning radiology revolution

 

Chest X-ray14 Dataset



Stanford Pneumonia study

https://stanfordmlgroup.github.io/projects/chexnet/

In 2017 Pranav Rajpurkar and Jeremy Irvin trained a DenseNet on NIH data scaled to 224x224 pixels

Set the benchmark performance which has not been significantly improved.

They evaluated pneumonia predictions against 4 radiologists.

"We find that the model 
exceeds the average radiologist 
performance on the pneumonia 
detection task."



Criticism of the Chest X-ray14 Dataset

https://lukeoakdenrayner.wordpress.com/2017/12/18/the-
chestxray14-dataset-problems/

In 2017 Luke Oakden-Rayner published a blog post discussing issues with the labels in the NIH data.

This led to more work on automatic label extraction.

In a sample of images red 
are said to be wrong



2019: the year of chest X-ray data

PADCHEST
160k images
Multiple views

Almost 200 labels

27% hand labelled, others 
using an RNN.

License:Creative Commons 
Attribution-ShareAlike

CheXpert
224k images

PA and L views
13 labels. 

Automated rule-based 
labeler

Non-commercial 
research purposes only

MIMIC-CXR
377k images

PA and L views
13 labels. 

Automated rule-based labeler. 
NIH (NegBio) and CheX 

labelers ran.

Non-commercial research 
purposes only. Confidentially 

training required.
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PADCHEST, ~200 labels

27% hand labelled, others 
using an RNN.

CheXpert, 13 labels

Custom rule-based 
labeler.

MIMIC-CXR, 13 labels

Automated rule-based 
labeler. NIH (NegBio) and 

CheX labelers used.

NIH chest X-ray14
14 labels

Automated rule-based 
labeler (NegBio)

RSNA Pneumonia Kaggle
Relabelled NIH data

A group at Google 
relabelled a subset of NIH 
images

MeSH automatic labeller

Many datasets exist with different methods of obtaining labels. Automatic        or hand labelled 



PALateral

Flattened 
diaphragm

Pleural 
effusion

Multi-modal/view inference (X-ray use case)

Here saliency maps are from 
models trained on single views.

These two tasks perform better 
when using lateral views.

[Bertrand, 2019]



Also: Multi-modal/view inference (MRI use case)

T1 T2

T1C Flair

Ischemic stroke 
lesion segmentation

(ISLES dataset)

Stroke perfusion 
estimation

Brain tumor 
segmentation

(BraTS dataset)

Image Credit: Mohammad Havaei 



Patient 1

Patient 2

Patient 3

Incomplete 

Input!

Expected:

Given:

Challenge: missing modalities/views



Integrating multiple views

Combine images 
right at the input

Take mean of 
activations in the 

middle of the network

Concat output 
features of two 

models with single 
prediction

Three losses. A 
network for each 

modality with losses 
that regularize each 

network. 

Image: [Hashir, Quantifying the Value of Lateral Views in Deep Learning for Chest X-rays, 2020]



Integrating multiple views (X-ray images)

All models are about equal in performance given the right hyperparameters. 
Hyperparameter tuning is easier on some models but not others

Image: [Hashir, Quantifying the Value of Lateral Views in Deep Learning for Chest X-rays, 2020]
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Chapter 2

Histology and Segmentation



Peter Bandi, et al. From detection of individual metastases to classification of lymph node status at 
the patient level: the CAMELYON17 challenge. IEEE-TMI 2018

CAMELYON17: A large high resolution open histology dataset for cancer detection

CAMELYON17 Dataset
1000 whole-slide images (WSIs) of sentinel lymph node. (~3GB each!)
5 medical centers. 40 patients from each center. 5 whole-slide images per patient.



https://colab.research.google.com/drive/13T9s3weexAw6YskKoY6c-VvoUgUvWsqf

Starting with a full slide image of 
breast tissue. Image is labelled as IDC or not Image is chopped into patches 

and labelled as IDC or not

Patch wise segmentation
Use case: Invasive Ductal Carcinoma (most common subtype of all breast cancers)

https://colab.research.google.com/drive/13T9s3weexAw6YskKoY6c-VvoUgUvWsqf


Slide design: Fei-Fei Li & Andrej Karpathy & Justin Johnson

Extract 
patch

Run through
a CNN

Classify 
center pixel

CNN p(cancer)

Class imbalance is an issue. Patch wise training allows 
easy balancing of classes using standard methods. 

Patch wise segmentation
Use case: Invasive Ductal Carcinoma (most common subtype of all breast cancers)



Fully convolutional processing

Kernel size 3

Kernel size 2

Input size 4

Output size 1



Fully convolutional processing

Kernel size 3

Kernel size 2

Input size 5

Output size 2



Fully convolutional processing

Kernel size 3

Kernel size 2

Input size 5

Output size 2

Input size 4
Input size 4



Fully convolutional processing

Kernel size 3

Kernel size 2

Input size 5

Output size 2

Model's receptive field = 4 nodes

Multiplications saved = 4

Allows for very fast inference.

However, training this way requires a lot of 
memory. Need to save past outputs.

Patch wise training together with FCN 
inference is a good balance. 

Input size 4
Input size 4



https://colab.research.google.com/drive/13T9s3weexAw6YskKoY6c-VvoUgUvWsqf

Input image Output class 0 Output class 1 class 1 > class 0

https://colab.research.google.com/drive/13T9s3weexAw6YskKoY6c-VvoUgUvWsqf


Noh et al, “Learning Deconvolution Network for Semantic Segmentation”, ICCV 2015
Slide design: Fei-Fei Li & Andrej Karpathy & Justin Johnson

Normal VGG “Upside down” VGG

Recap: Segmentation using a bottleneck

Upsampling possible with 
● Unpooling
● Transposed convolutions



Recap: U-NET

Difference: 
Skip connections (like resnet)

Dogma: skips carry spatial 
information, bottleneck carries 

high level structure.



Segmentation metrics
gt pred

True Positive
True Negative

False Negative

False Positive

IoU=0.4 IoU=0.7 IoU=0.9



Training with dice

Using the dot product to compute the 
intersection allows for a differentiable loss.

For multiple classes a basic 
approach is to average over all 

classes  

Exercise: What p 
maximizes this?

More reading: https://arxiv.org/abs/1707.00478

Use a sigmoid or a softmax to restrict output.



Images provided by Konrad Wagstyl (University College London) 2020

input gt seg

Predicted p(cortex) Edge prediction pred seg

Baseline

With edge 
prediction

Tricks: Improving edges in segmentations by predicting edges

Brain histology 
image

More reading about idea: [Polzounov, WordFence: Text Detection in Natural Images with Border Awareness, 2017]

Ground truth
p(cortex)

Task: segment cortical layers in 
brain histology

Model output

None



Challenge: extreme class imbalance (e.g. lung nodule)

Background classes can dominates the loss 
and cause learning instability do to large 

gradients.

Balanced sampling may not work as well 
because patches which could yield false 

positives are rarely seen to train on.



CASED importance sampling for large images

[Jesson, https://arxiv.org/abs/1807.10819 ]

General Idea:

Store a probability for each patch.

Generate patches based on this probability.

Probability is inverse of how well your model 
performs on that patch.

Samples are stratified by class.
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Chapter 3

Cell Counting



Use case: Proliferation/Cell growth studies

Treat cells with different compounds and 
observe proliferation over time 

Standard 96-well plate



Bachstetter, MW151 Inhibited IL-1? Levels after Traumatic Brain Injury with No Effect on 
Microglia Physiological Responses, PLOS ONE, 2017

Use case: Proliferation/Cell growth studies



Complicated cell structure

Use case: Counting in histology slides



1. Create binary segmentation image

2. Watershed segmentation

3. Isolate and count

Cell counting (classic CV)
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1. Create binary segmentation image

2. Watershed segmentation

3. Isolate and count

Cell counting (classic CV)

This works well on easy tasks but doesn't scale.

"Pipelines" end up breaking on new images with 
different lighting or stain.



How to get labels?



V. Lempitsky and A. Zisserman, “Learning To Count Objects in Images,” 2010.

Counting via Segmentation

Targets for regression
Sigma is typically small 

like a few pixels  
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V. Lempitsky and A. Zisserman, “Learning To Count Objects in Images,” 2010.

Counting via Segmentation

To recover count:

Targets for regression
Sigma is typically small 

like a few pixels  

Train model to regress

Note: Square kernels for redundant counting
work better [Cohen 2017]



Multiple output classes

Count and classify different cell types [Bidart 2018]

Counting and classifying also possible 
using multiple output channels.

Combine losses together

Max prediction over output channels 
for each cell identified
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Chapter 4

Incorrect Feature Attribution



Incorrect feature attribution

[Ross, Right for the Right Reasons, 2017]
[Viviano, Underwhelming Generalization Improvements From Controlling Feature Attribution, 2019]

Goal: predict if there are two plus signs anywhere

However, an easy to spot confounder exists!

The confounding variable distracts the model causing 
it to fail to generalize.
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Incorrect feature attribution

[Ross, Right for the Right Reasons, 2017]
[Viviano, Underwhelming Generalization Improvements From Controlling Feature Attribution, 2019]

Goal: predict if there are two plus signs anywhere

However, an easy to spot confounder exists!

The confounding variable distracts the model causing 
it to fail to generalize.

We can observe this by looking at the saliency map



Incorrect feature attribution

Models can overfit to confounding 
variables in the data. 

● Merging datasets with different 
class imbalance (confounding 
artifacts from each hospital)

● Labels confounding with each other

● Demographics confounding with 
labels 

[Ross, Right for the Right Reasons, 2017]
[Zeck, Confounding variables can degrade generalization performance of radiological ..., 2018]

[Viviano, Underwhelming Generalization Improvements From Controlling Feature Attribution, 2019]
[Simpson, GradMask: Reduce Overfitting by Regularizing Saliency, 2019]



Incorrect feature attribution

Models can overfit to confounding 
variables in the data. 

● Merging datasets with different 
class imbalance (confounding 
artifacts from each hospital)

● Labels confounding with each other

● Demographics confounding with 
labels 

[Ross, Right for the Right Reasons, 2017]
[Zeck, Confounding variables can degrade generalization performance of radiological ..., 2018]

[Viviano, Underwhelming Generalization Improvements From Controlling Feature Attribution, 2019]
[Simpson, GradMask: Reduce Overfitting by Regularizing Saliency, 2019]

(10k images)

Example:Systematic discrepancy 
between average image in datasets



Incorrect feature attribution

Recall:
NIH/PADCHEST Diff

[Viviano, Underwhelming Generalization Improvements From Controlling Feature Attribution, 2019]



Mitigation approaches
Feature engineering

● Range normalization ( /max)
● Subspace alignment (align data using their eigenbasis based on a feature) [Fernando 2014]
● Removing the largest principle component (joint PCA and reconstruct without largest eigenvector)
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Mitigation approaches
Feature engineering

● Range normalization ( /max)
● Subspace alignment (align data using their eigenbasis based on a feature) [Fernando 2014]
● Removing the largest principle component (joint PCA and reconstruct without largest eigenvector)

During training

● Reverse gradient  (make intermediate layer invariant to a label) [Ganin & Lempitsky, 2014]
● Right for the Right Reasons (regularize saliency map) [Ross, Hughes, & Finale Doshi-Velez, 2017]
● GradMask (regularize contrast saliency map between classes) [Simpson, 2019]
● ActivDiff (regularize representation to focus on pathology) [Viviano, 2019]

56

What if feature artifact is correlated with target label?
Is the reason that should be used for prediction known?
What if it is not known?
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Chapter 5

GANs in Medical Imaging



Medical image-to-image translation considered harmful 

MR -> CT CT -> PET
Synthesized H&E staining

Adversarial losses are very good 
at distribution matching 

(e.g. CycleGAN).
But artifacts could be introduced 

and then used in diagnosis 
which can be dangerous.

Many papers have proposed methods that can "translate between modalities"



But a bias in training data can lead to incorrect translation 

T1 Transformed

Image 
Translation/
Synthesis

Undersampled 
raw MRI 

source data

60

Use case: MRI modality transformation

Cohen, Distribution Matching Losses Can Hallucinate Features in Medical Image Translation, 2018

Everyone is 
so healthy!



But a bias in training data can lead to incorrect translation 

T1 Transformed

Everyone is 
so healthy!

T1 Real

Real 
Image

Image 
Translation/
Synthesis

Source 
Image

61

Use case: MRI modality transformation

Cohen, Distribution Matching Losses Can Hallucinate Features in Medical Image Translation, 2018

Undersampled 
raw MRI 

source data



Tumors here are a proxy to illustrate the impact of an unaccounted pathology 

Cohen, Distribution Matching Losses Can Hallucinate Features in Medical Image Translation, 2018
62
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[Goldsborough, CytoGAN: Generative Modeling of Cell Images, 2017]

Latent space interpretation

Vector algebra:

Real Real

Example: CytoGAN learning a self-supervised representation for cell images.
● Encoder can be useful for semi-supervised learning 
● Exploring representations to understand the cell biology

Adversarial losses are useful for representation learning



Semi-supervised Segmentation with GANs

Images with segmentation labels

Images without segmentation labels



Predicted segmentations from 
unlabelled images

Semi-supervised Segmentation with GANs

Predicted segmentations from 
images that were trained on

Match 
distributions

Luc et al. "Semantic Segmentation using Adversarial Networks" 2016
Zhang et al., "Deep Adversarial Networks for Biomedical Image Segmentation Utilizing Unannotated Images," 2017



Semi-supervised Segmentation with GANs

Segmentation Loss

E should predict 1 for labelled 
examples

Luc et al. "Semantic Segmentation using Adversarial Networks" 2016
Zhang et al., "Deep Adversarial Networks for Biomedical Image Segmentation Utilizing Unannotated Images," 2017

Update 
discriminator

E

Update 
segmenter

S

E should predict 0 for 
unlabelled examples

Segmentation output should 
not make E predict 0



Explanation by Progressive Exaggeration

Train a classifier and generative model jointly while 
maintaining consistency between them.

[Singla et al. Explanation by Progressive Exaggeration. ICLR 2020]

Explainer function:
(cf outputs a one hot)



Explanation by Progressive Exaggeration

[Singla et al. Explanation by Progressive Exaggeration. ICLR 2020]

Generating images conditioned on an over and under prediction of the model helps 
explain what aspects of the image were important in prediction.

Here we can see the heart enlarge or shrink.

Prediction (normalized heart size)
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