Deep learning approaches to medical applications

Joseph Paul Cohen

Postdoctoral Fellow at Montreal Institute for Learning Algorithms Friend of the Farlow Fellow at Harvard University U.S. National Science Foundation Graduate Fellow

- 1. What is Deep Learning?
- 2. Image and Volume
 - a. Segmentation
 - b. Counting
 - c. Interpreting
- 3. Genomics
 - a. Representation

Automated pathology

Tumor Segmentation

Automated detection of metatases in hematoxylin and eosin (H&E) stained whole-slide images of lymph node sections.

Reduce the workload of the pathologists and the subjectivity in diagnosis!

Normal Patches

Tumour Patches

Determining the probability that an image patch is a tumour can be solved using deep learning models.

https://camelyon16.grand-challenge.org/

Image credit: Harvard Medical School, MIT, and EXB Research

https://camelyon16.grand-challenge.org/ Image credit: Harvard Medical School, MIT, and EXB Research

https://camelyon16.grand-challenge.org/ Image credit: Harvard Medical School, MIT, and EXB Research

High accuracy screening and very reproducible!

https://camelyon16.grand-challenge.org/ Image credit: Harvard Medical School, MIT, and EXB Research

How does it work?

Segmentation with Deep Learning

Segmentation training in progress

RGB

Ground Truth

Prediction

Image credit: Lewis Fishgold and Rob Emanuele

How can the network learn?

Example

stretch pixels into single column

Image Patch

Given a patch predict the class of the center pixel

Softmax

To predict multiple classes we project to a probability distribution

Simplex

Because it is on a simplex; the correction of one term impacts all

Image credits: http://gureckislab.org/

Infinite ways to generate the same output.

A correction of one sends gradients to others

We can learn unseen classes through a process of elimination.

https://github.com/ieee8023/NeuralNetwork-Examples/blob/master/general/simplex-softmax.ipynb

Softmax and Cross-entropy loss

To predict multiple class we can project the output onto a simplex and compute the loss there.

More segmentation tasks!

More segmentation tasks!

More segmentation tasks!

Sub-acute ischemic stroke lesion segmentation

Stroke Perfusion Estimation

Brain tumor segmentation

Multi-modal MRI acquisition

Sub-acute ischemic stroke lesion segmentation

Stroke Perfusion Estimation

Brain tumor segmentation

Multi-modal MRI acquisition

Sub-acute ischemic stroke lesion segmentation

Stroke Perfusion Estimation

Brain tumor segmentation

HeMIS: Hetero-Modal Image Segmentation

HeMIS: Hetero-Modal Image Segmentation

FLAIR

T

T1c

HeMIS

Truth

T2W

T1W

Truth

T1c

Truth

FLAIR

T2W

T1W

FLAIR

T2W

ALC: NO

T1W

T1c

HeMIS

.

Truth

Brain tumor segmentation (BRATS2013 dataset)

Training data:

220 subjects with high grade and54 subjects with low grade tumors

HeMIS: Hetero-Modal Image Segmentation *

Mohammad Havaei¹², Nicolas Guizard¹, Nicolas Chapados¹, and Yoshna Bengio³

¹ Imagia Inc., Montreal, Qe, Canada ² Université de Shortscole, Qe, Canada ³ Université de Montaida, Manada, Canada fenhaman, la coltar, exploraret, ai coltar, et oparto é tinagia, con especial de la coltar, especial de la contracta de la coltar porte de la coltar, especial de la contracta de la coltar http://www.imagia.com

Abstract. We introduce a deep instruing images we work that is nextremely robust to mining imaging no barran, for each modality, as embedding of the input instruments of the second second second second means) are well defined. Points in status space, which modeline smalldal at information generations (in means) are well defined. Points in the before means are seen in the second second second second means and the second second

Dice Similarity Leaderboard				Challenge			
Method	Complete	Core	Enhancing	Complete	Core	Enhancing	
Tustison	79	65	53	87	78	74	
Zhao	79	59	47	84	70	65	
Meier	72	60	53	82	73	69	
HeMIS	83	67	57	88	75	74	

Interpreting Chest X-Rays

best X.may in one of the most con te most commonly access for screening and diagnosi mendous number of X-ra

In this paper, we areaent a new chest X-ray databas

namely "ChestX-ray8", which comprises 108,948 frontal-view X-rays images of 32,717 unique patients with the text-mined eight disease image labels (where each image can

nd by radiological reports a lated and stored in many modern hospitals' Pis or Archiving and Communication Systems (PACS). Or er other ride, it is still an open particle how this typ (hospital-size knowledge database containing invaluab saging informatics (i.e., loosely labeled) can be used to fi e data-hungry deep learning paradigms in b g traly large-scale high precision computer-aided diagno

is shallow methodologies built un

nine tasks more feasible to solve, in image of

ares. Deep noural network re z the joint language and visio

Wang, ChestX-ray8: Hospital-scale Chest X-ray Database and Benchmarks on Weakly-Supervised Classification and Localization of Common Thorax Diseases, 2017

Convolutional Neural Net Predictions

Setting	Atelectasis	Cardiomegaly	Effusion	Infiltration	Mass	Nodule	Pneumonia	Pneumothorax
AlexNet	0.6458	0.6925	0.6642	0.6041	0.5644	0.6487	0.5493	0.7425
GoogLeNet	0.6307	0.7056	0.6876	0.6088	0.5363	0.5579	0.5990	0.7824
VGGNet-16	0.6281	0.7084	0.6502	0.5896	0.5103	0.6556	0.5100	0.7516
ResNet-50	0.7069	0.8141	0.7362	0.6128	0.5609	0.7164	0.6333	0.7891

AUCs for each class of a multi-target model

32,717 patients

108,948 X-Rays

Text extracted using NLP from doctors notes

Radiology report	Keyword	Localization Result
findings include: 1. left basilar at- electasis/consolidation. 2. prominent hilum (mediastinal adenopathy). 3. left pic catheter (tip in atriocaval junc- tion). 4. stable, normal appearing car- diomediastinal silhouette. impression: small right pleural ef- fusion otherwise stable abnormal study including left basilar infil- trate/atelectasis, prominent hilum, and position of left pic catheter (tip atriocaval junction).	Effusion; Infiltration; Atelectasis	

Table 8. A sample of chest x-ray radiology report, mined disease keywords and localization result from the "Atelectasis" Class. Correct bounding box (in green), false positives (in red) and the ground truth (in blue) are plotted over the original image.

Radiology report	Keyword	Localization Result				
findings: no appreciable change since XX/XX/XX. small right pleural effu- sion. elevation right hemidiaphragm. diffuse small nodules throughout the lungs, most numerous in the left mid and lower lung. impression: no change with bilateral small lung metastases.	Effusion; Nodule					

Table 10. A sample of chest x-ray radiology report, mined disease keywords and localization result from the "Effusion" Class. Correct bounding box (in green), false positives (in red) and the ground truth (in blue) are plotted over the original image.

Cell counting from images

Cell counting from images

a dauk in time

Cohen et al., "Count-ception: Counting by Fully Convolutional Redundant Counting," 2017

Cell counting from images

Cohen et al., "Count-ception: Counting by Fully Convolutional Redundant Counting," 2017

** Cell Profiler results were obtained using a single pipeline (single) and using three different pipelines (multiple) to account for color differences in two of the eleven images.

[Cohen et al. 2017]

[Cohen et al. 2017]

Kaggle sea lion challenge (37th/385 place) Implemented by Robin Dinse (Universität Koblenz-Landau)

Semi-supervised Segmentation with GANs

Images without segmentation labels

Images with segmentation labels

Semi-supervised Segmentation with GANs

Zhang et al., "Deep Adversarial Networks for Biomedical Image Segmentation Utilizing Unannotated Images," 2017

Deep Adversarial Networks for Biomedical Image Segmentation Utilizing Unannotated Images

Yizhe Zhang¹⁽⁸⁸⁾, Lin Yang¹, Jianxu Chen¹, Maridel Fredericksen², David P. Hughes², and Danny Z. Chen¹

¹ Department of Computer Science and Engineering, University of Notre Dame, Notre Dame, IN 46556, USA vzbane298d, edu

² Department of Entomology and Department of Biology, Center for Infectious Disease Dynamics, Pennsylvania State University, University Park, PA 16802, USA

Abstract. Semantic segmentation is a fundamental problem in biomedical image analysis. In biomedical practice, it is often the case that only limited annotated data are available for model training. Unannotated

Method	# images used		F_1 Soci	F_1 Socre Object		Dice	ObjectHausdorff	
	Anno.	Unanno.	part A	part B	part A	part B	part A	part B
SN (base model)	85	0	0.9071	0.825	0.898	0.826	48.740	126.479
SSAN [6]	85	0	0.9060	0.836	0.886	0.818	53.393	128.385
Ladder networks [9]	85	100	0.9047	0.833	0.893	0.818	45.418	110.984
CUMedVision [2]	85	0	0.912	0.716	0.897	0.718	45.418	160.347
Multichannel1 [16]	85	0	0.858	0.771	0.888	0.815	54.202	129.930
Multichannel2 [15]	85	0	0.893	0.843	0.908	0.833	44.129	116.821
DAN	85	100	0.916	0.855	0.903	0.838	45.276	104.982

Genomics - Gene Understanding

Gene understanding

Factorized Embeddings

Gene expression is predicted given (Tissue, Gene) pair

Genes condition Tissue Prediction Tissues condition Gene Prediction

Embedding locations are updated based on function

[Trofimov et al. ICML WCB 2017]

type

- Artery Aorta
- Artery Coronary
- Artery Tibial
- Breast Mammary Tissue
- Heart Atrial Appendage
- Heart Left Ventricle

type

- Breast Mammary Tissue
- Heart Atrial Appendage
- Heart Left Ventricle
- Uterus

We can visualize an expression level for every tissue embedding

Testis

.

Thyroid

Uterus

Vagina

KRT (Keratin)

Keratin is the protein that protects epithelial cells from damage or stress

Thanks!

Conferences Q

 $ar\chi iv$ ShortScience.org

ShortScience.org