
High Performance
Computing How-To
Joseph Paul Cohen

This work is licensed under a Creative Commons
Attribution-ShareAlike 4.0 International License.

Abstract
This talk discusses how HPC is used and how
it is different from typical interactive programs. I
discuss job descriptions and scheduling. It also
includes two entry level hands on examples.
One, in Python, simple divides up work and the
other, in Java, uses many cores at once to
compute even faster.

Do you really need HPC?
What are you trying to do?

1. Analyse data?
a. Data won't fit in memory? Does it need to?
b. Can process locally but it's slow?

2. Analyse an Algorithm?
a. Need to vary parameters?

3. Visualize data?
a. Need to process the data to plot it?

Process

HPC Storage

Input/Output Overview

STDIN

STDOUT

STDERR

FI
LE

 IO

Internet

NET IO

Job Submission

The IO of a process
is not interactive.

Job submission
dictates the STDIN,
STDOUT, and
STDERR locations
on the HPC Storage

ARGV

Grid Overview

……...

……...

……...

Job

Submission Host

Each job runs on
one core (or many)
of a machine in the
cluster.

You are
responsible for
keeping your
process within the
memory and cpu
limits you specify.

Execution Hosts

Job Scheduling
Jobs are encapsulated so they run modularly.

A queue can be filled with 1000's of jobs that take 10 hours
each running only 30 at a time.

A queue can be filled with 1000's of jobs that take 20
minutes running all at once.

Job Scheduling

MGHPCC Cacti server statistics

Process Limits
Memory Default: 1G per core

CPU Default: 1 core
● As you request more CPUs, memory request

will also go up.
● High limits can slow down scheduling. Free

machines may have low specs. Don't wait for
no reason!

System Differences

● Shared disk storage vs independent storage
● Job schedulers (bsub,qsub,condor_q)
● Max size of storage (maybe scratch space)

First Challenge

Varying
Parameters

git clone https://github.com/ieee8023/hpc-demo

In folder: fibonacci

GET THE CODE

Toy Problem (fibonacci sequence)

import sys

def F(n):
 if n == 0: return 0
 elif n == 1: return 1
 else: return F(n-1)+F(n-2)

i = sys.argv[1]

print "#," + i + "," + str(F(int(i)))

fib.py

We want to evaluate this
code from 1-100
How to split?

Running from the command line without cluster

for i in `seq 1 40`;
do
 python fib.py $i
done

seq examples:

$ seq 1 3
1
2
3

$ seq 5 10 30
5
15
25

runJobs.sh

Lets throw computers at it!?

Sample BSUB script (MGHPCC)

#BSUB -q short # which queue (long or short)

#BSUB -n 1 # to request a number of cores

#BSUB -R rusage[mem=2000] # to specify the amount of
memory required per slot, default is 1G

#BSUB -W 4:00 # how much Wall Clock (time) this job
needs in Hours:Seconds, default is 60 minutes

…………..…...

BSUB Job Submission File

Sample BSUB script (MGHPCC)

#BSUB -J demo[1] #name and number of copies of this
job to run. Here 1 time. demo[5] would be 5 times.

#Set where logs go %J is job id and %I is instance of it
#BSUB -o "logs/%J.%I.out"
#BSUB -e "logs/%J.%I.err"

execute program with argument
python fib.py 5

BSUB Job Submission File

BSUB wants the job script to be piped in STDIN
$bsub < job.bsub

This is done from a submission host. You
should not run jobs on the submission host.

Running jobs

Sample BSUB script (MGHPCC)

bsub << EndOfMessage
#BSUB -q short
….. add BSUB args
#BSUB -e "logs/%J.%I.err"

python fib.py $1 ← here we use the first CLI arg

EndOfMessage

run.bsub

Modify runJobs.sh to run on cluster

for i in `seq 1 40`;
do
 sh run.bsub $i
done

runJobs.sh

Run script to start jobs

$ sh runJobs.sh
Job <2413367> is submitted to queue <short>.
Job <2413368> is submitted to queue <short>.
Job <2413369> is submitted to queue <short>.
Job <2413370> is submitted to queue <short>.
Job <2413371> is submitted to queue <short>.
………...

Is your job running?

[jc93b@ghpcc06 demo]$ bjobs

JOBID USER STAT QUEUE FROM_HOST EXEC_HOST JOB_NAME SUBMIT_TIME

2413343 jc93b RUN short ghpcc06 2*c23b07 demo38[1] Feb 13 19:14

2413344 jc93b RUN short ghpcc06 2*c23b07 demo39[1] Feb 13 19:14

2413345 jc93b RUN short ghpcc06 2*c23b07 demo40[1] Feb 13 19:14

Do you want to stop it?

kill job with id 2413343

[jc93b@ghpcc06 demo]$ bkill 2413343

or just kill all the jobs

[jc93b@ghpcc06 demo]$ bkill 0

Follow job progress

$ tail -f logs/2413379.1.*
==> logs/2413379.1.out <==
Sun Feb 15 14:06:08 EST 2015 start

==> logs/2413406.1.out <==
Lets calc!

==> logs/2413401.1.out <==
Done

Follow all progress

$ tail -f logs/*
#,1,1
#,2,1
……...
#,38,39088169
#,39,63245986
#,40,102334155

Check Results

$ cat logs/* | grep "#,"
#,1,1
#,2,1
……...
#,38,39088169
#,39,63245986
#,40,102334155

View results
 SCP them back to yourself

$cat logs/* | grep "#," > results.csv
$scp results.csv ieee8023@argus.cs.umb.edu:demo

$scp jc93b@ghpcc06.umassrc.org:results.csv .

Certificate Login

Certificates allow
quick login. Easy to
share and revoke.

$ssh-keygen
$ssh-copy-id jc93b@ghpcc06.umassrc.org
$ssh -i id_ghpcc jc93b@ghpcc06.umassrc.org

laptop$ cat id_ghpcc
-----BEGIN RSA PRIVATE KEY-----
YXNkYXNkZmFzZGZhc2RmYXNkZmFzZGZhc2RrZmpibmFza2R
mamJuYXNrZGpmYm53bGllamZoYglxbGl3ZWhmYmFsc2RoZm
….
-----END RSA PRIVATE KEY-----

ghpcc$ cat .ssh/authorized_keys
ssh-rsa AAAAB3NzaC1y…….

Multiple Threads Sharing Memory

……...

……...

……...

Job

Submission Host

We can utilize
multiple cores on a
host at once.

This way we can
share memory
between threads.

Execution Hosts

git clone https://github.com/ieee8023/hpc-demo

In folder: weka-research-computing

GET THE CODE

Add Java
In your ~/.bash_profile add this line:

module load jdk/1.7.0_25

Browse other modules with:
module avail

Using Weka, sharing data in memory

Evaluate Support
Vector Machines

Using Weka

// Get an Instances object
Instances data = new Instances(....);

//Create an eval object and do cross-validation
Evaluation eval = new Evaluation(data);
eval.crossValidateModel(classifier, data, 5, new Random());

//calculate the F1-Score
double f1 = eval.weightedFMeasure();

Runnable Experiment object will allow to multithread

Experiment implements Runnable {

Experiment(String label,
String dataset,
Instances instances,
Classifier classifier,
ThreadPoolExecutor es)

…..

Experiment Class

Sharing Instances in memory

……...

Execution Hosts with
processes

……...

If loading the data
into memory is costly
then don't do it more
than you have to.

Datasets in memory

Running multiple Experiments

for (int i : new int[]{1,2,3,4,5})
for(Instances instances : instancess){

Experiment exp = new Experiment(
"Test1",
instances.relationName(),
instances,
new LibSVM(),
es);

// run exp directly with: exp.run();
// run it with an executor with: es.execute(exp);

}

Java MultiThreading

// make threadpool to multithread with limit (cores)
ThreadPoolExecutor es = (ThreadPoolExecutor) Executors.
newFixedThreadPool(cores);

//create Experiment and execute it right away
es.execute(new Experiment(.....));

//wait forever for all Experiments to finish
es.shutdown();
es.awaitTermination(9999, TimeUnit.DAYS);

Running with bsub

#BSUB -q short # which queue
#BSUB -n 5 # to request a number of cores
…

we call run.sh with sh
sh run.sh $1

===
run.sh:
java -Xmx4g -cp `sh getclasspath.sh`:classes joe.Experiment $@

run.bsub

What results do you get for an SVM?

http://www.statsoft.com/textbook/graphics/SVMIntro3.gif

Challenges
● Add another dataset
● Vary the cross validation from 2-10

○ Plot the difference
● Compare different classifiers

○ NaiveBayes, J48, AdaBoostM1,RandomForest

From my work

Usage Examples

Evaluating NLCD Data

Evaluating National Land Cover (NLCD) Data

For evaluation of a site
a distance matrix

consisting of all tiles is
computed. To evaluate
EMD_112 a grid must

be used.

Evaluating Building Detection Code

Finding optimal parameters for the
entire pipeline is very expensive.
~4hr per set of parameters. To
generate heatmaps must be done
using a grid system.

Links

Wiki: http://wiki.umassrc.org/wiki/index.php/Main_Page

Request Access: https://ghpcc06.umassrc.org/hpc/index.php

http://wiki.umassrc.org/wiki/index.php/Main_Page
https://ghpcc06.umassrc.org/hpc/index.php

Speaker
Joseph Paul Cohen

Email: joecohen@cs.umb.edu
National Science Foundation Graduate Fellow
Ph.D Candidate - Computer Science
University of Massachusetts Boston

