Our statement:

Image translation (via distribution matching) should
not be used for direct interpretation.



Training Data Model Output

Losses like in CycleGAN just match distributions



[CycleGAN, Zhu 2017]

[Karras, 2018]

They are very good at distribution matching



Everyone is

so healthy!

Source Image
Image Translation/
Synthesis

But a bias in training data can lead to incorrect translation



Time t+1

Even with all the training data in There will be new diseases
the world today. tomorrow that are out of distribution.



What is image translation via distribution matching?

I
fa,b(a)

|
Real or Fake ?

I
—log(D(fas(a))) 1

Discriminator

D maﬁ bmiﬁll)b [logD(b)]
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Model Breakdown



D max E [logD®)]+ E [log(1 — Dlfas(a)))
fap(a) min B [=log(D(fap(a)))

e fo.u(a) should produce examples in ),
e [, can be anything non-finite, like a Gaussian

e No guarantee mapping maintains phenotypes



GAN CondGAN L1
Optimizing
D max E [logD(b)]+ E [log(1— D(f.s(a)))]
b~ Dy a~D,
Optimizing
fap(a) min E [~log(D(fap(a))) + [|foalfas(@)) = alli
a b
e Add a reconstruction loss regularizer for the func fa,b(a) wprert S\
e Loss term still matches distribution Db Cvel
ycle
Loss!

e No guarantee mapping maintains phenotypes



D. . max (a,b)NI(E‘%)a’Db)[logD(b, a)| + arﬂ%a log(1 — D(fap(a),a))]
fapla) min E [—log(D(fas(a)))

e [ is given paired examples allowing detection of what to preserve
e [ still plays arole in what [) learns

e No guarantee mapping maintains phenotypes
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Optimizing

D

' — b
foole) min B[ usfa) — bl

o Jfa,5(a) should produce examples in [
o Pixel-wise loss

e No guarantee mapping maintains phenotypes
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Visual Evaluation
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CycleGAN results
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CycleGAN

CondGAN
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Quantitative Evaluation
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Predicted as a: [[iiiimor " INNGEAIHNN
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Predicted as a: [[iiiimor " INNGEAIHNN
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Our statement:

Image translation (via distribution matching) should
not be used for direct interpretation.
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Where do go from here?

1. How to guarantee image translation? (I doubt it)

2. Where should distribution matching be used in medical imaging?
a. Data augmentation (for classification, segmentation, registration)
b. Better features (for unsupervised learning)
c. To correct model predictions [Zhang MICCAI 2017]
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Limitations

e We test only a subset of loss terms which compose most methods

e The synthetic BRATS 2013 data had tumors added to healthy brains (in real
data the entire brain is sick)
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