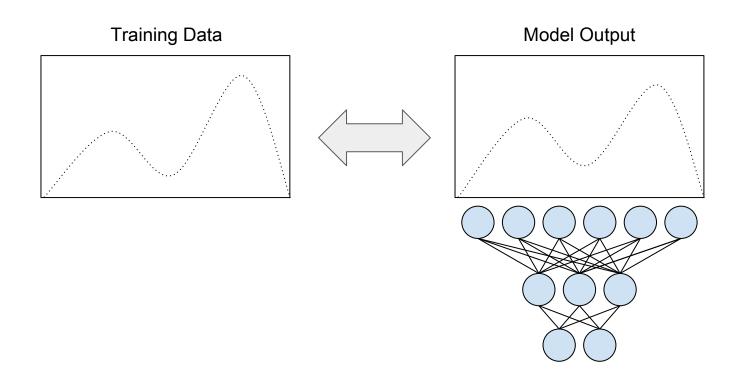
Our statement:

Image translation (via distribution matching) should not be used for direct interpretation.

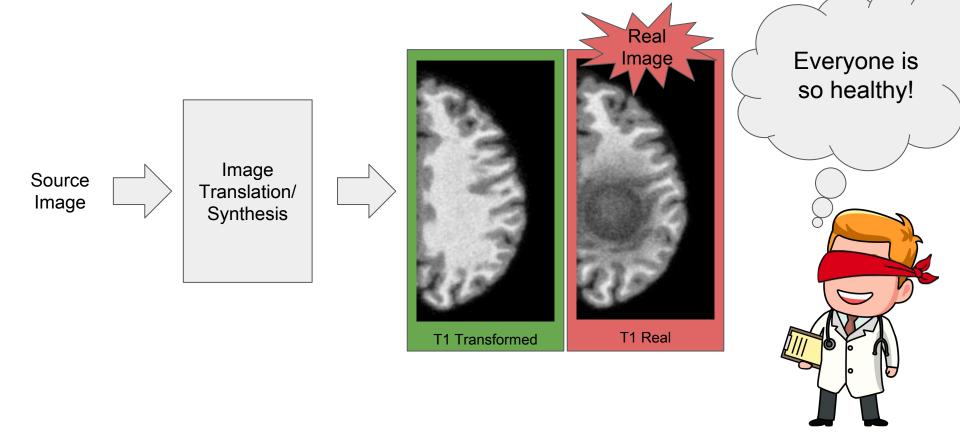


Losses like in CycleGAN just match distributions

[Karras, 2018]

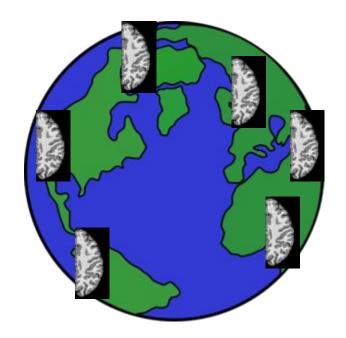
[CycleGAN, Zhu 2017]

They are very good at distribution matching



But a bias in training data can lead to incorrect translation

Time t

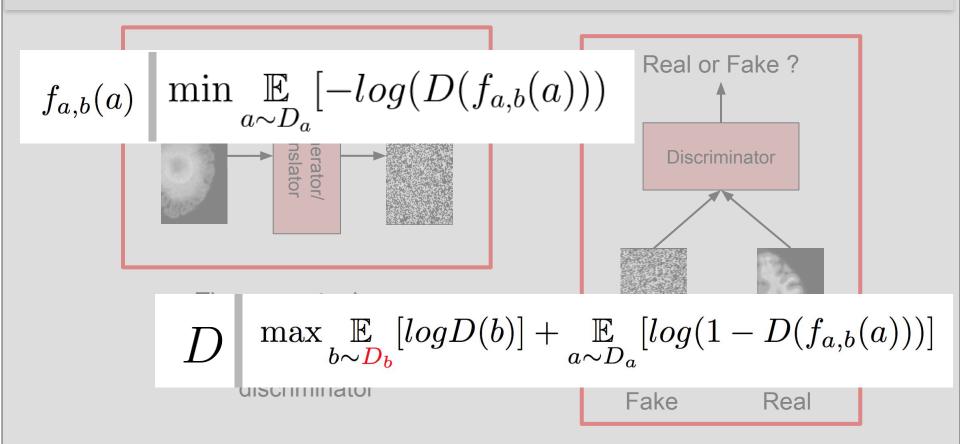


Even with all the training data in the world today.

Time t+1

There will be new diseases tomorrow that are out of distribution.

What is image translation via distribution matching?



Model Breakdown

Optimizing

$$D = \max_{b \sim D_b} \mathbb{E}[logD(b)] + \mathbb{E}_{a \sim D_a}[log(1 - D(f_{a,b}(a)))]$$

Optimizing

$$f_{a,b}(a) \min_{a \sim D_a} \mathbb{E}\left[-log(D(f_{a,b}(a)))\right]$$

- $f_{a,b}(a)$ should produce examples in D_b
- D_a can be anything non-finite, like a Gaussian
- No guarantee mapping maintains phenotypes

L1

Optimizing

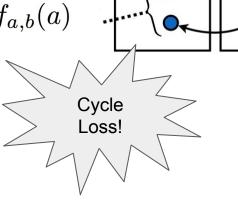
$$\max_{b \sim D_b} \mathbb{E}[log D(b)] + \mathbb{E}_{a \sim D_a}[log(1 - D(f_{a,b}(a)))]$$

Optimizing
$$a\sim D_b$$
 $a\sim D_a$ $f_{a,b}(a)$ $\min \mathop{\mathbb{E}}_{a\sim D_a}[-log(D(f_{a,b}(a)))+||f_{b,a}(f_{a,b}(a))-a||_1]$

Add a reconstruction loss regularizer for the func $f_{a,b}(a)$

Loss term still matches distribution D_h

No guarantee mapping maintains phenotypes



Optimizing

$$X_{(a}$$

 $\max \underset{(\boldsymbol{a},b)\sim(D_a,\boldsymbol{D_b})}{\mathbb{E}}[logD(b,\boldsymbol{a})] + \underset{a\sim D_a}{\mathbb{E}}[log(1-D(f_{a,b}(a),\boldsymbol{a}))]$

Optimizing

$$f_{a,b}(a) \min_{a \sim D_a} \mathbb{E}\left[-log(D(f_{a,b}(a)))\right]$$

- *D* is given paired examples allowing detection of what to preserve
- D_h still plays a role in what D learns
- No guarantee mapping maintains phenotypes

Optimizing

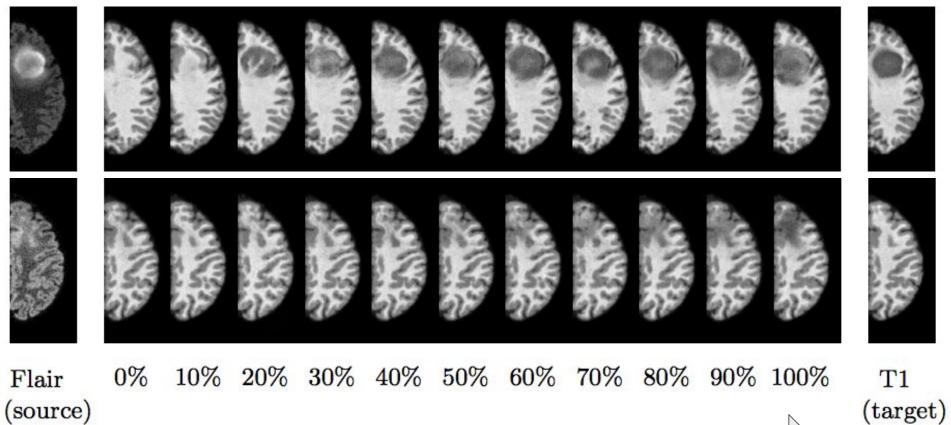
 Γ

$$f_{a,b}(a) \min_{(a,b)\sim(D_a, \mathbf{D_b})} ||f_{a,b}(a) - b||_1$$

- ullet $f_{a,b}(a)$ should produce examples in D_b
- Pixel-wise loss
- No guarantee mapping maintains phenotypes

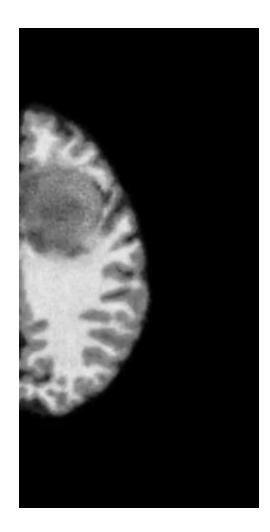
Visual Evaluation

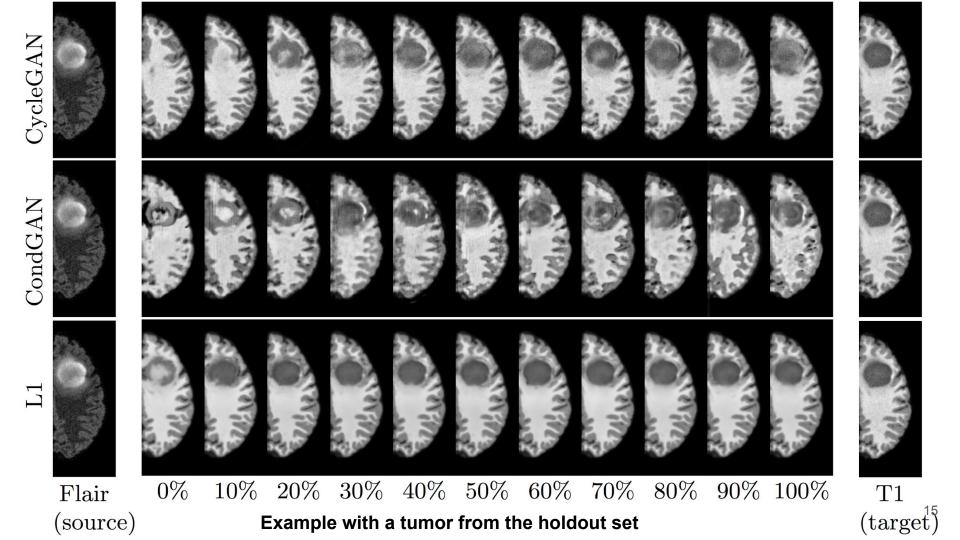
CycleGAN results

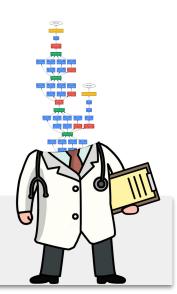


% training data with tumor

13

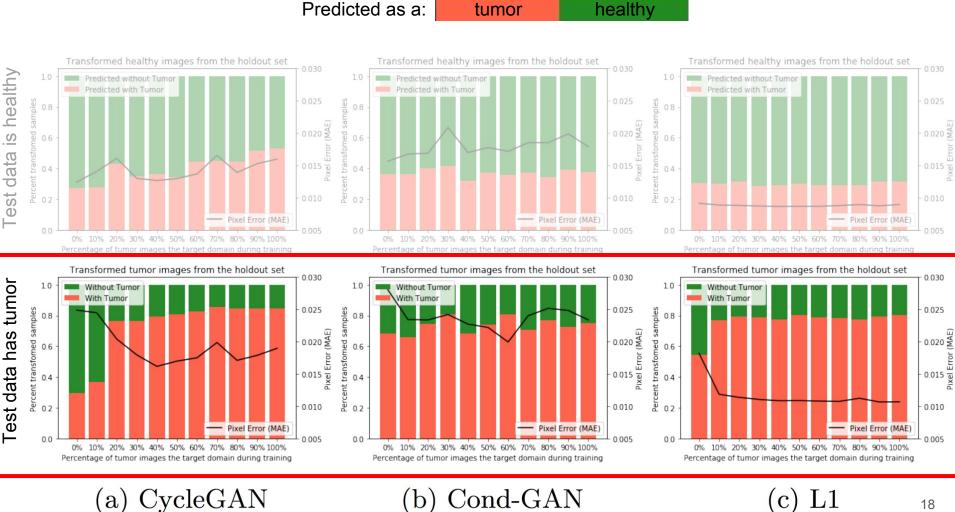






Quantitative Evaluation





Our statement:

Image translation (via distribution matching) should not be used for direct interpretation.

Where do go from here?

1. How to guarantee image translation? (I doubt it)

- 2. Where should distribution matching be used in medical imaging?
 - a. Data augmentation (for classification, segmentation, registration)
 - b. Better features (for unsupervised learning)
 - c. To correct model predictions [Zhang MICCAI 2017]

Limitations

- We test only a subset of loss terms which compose most methods
- The synthetic BRATS 2013 data had tumors added to healthy brains (in real data the entire brain is sick)

Joseph Paul Cohen, PhD

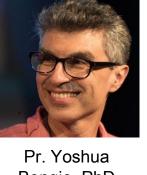
Martin Weiss

Tristan Sylvain

Margaux Luck, PhD

Sina Honari

Assya Trofimov



Bengio, PhD

Vincent Frappier, PhD

Thanks!

Distribution Matching Losses Can Hallucinate Features in Medical Image Translation

Joseph Paul Cohen

Margaux Luck

Sina Honari

See us at poster M-60 https://arxiv.org/abs/1805.08841