

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0

Working with a Raspberry Pi

 $\bullet \bullet \bullet$

The RPi is based on Linux. You can communicate to the world using GPIO pins as well as Ethernet, USB, Audio, and Video. The RPi stands out from a regular computer because of its GPIO pins which can be controlled a variety of ways. This talk will discuss basic RPi uses and how to use the Java PI4j Library to work with hardware devices.

What is a Raspberry Pi?

CONTRACTOR OF A CONTRACTOR OF

https://s3.amazonaws.com/gmi-digital-library/3878228e-c2ee-4267-a93e-f930ff89f9a7.jpg

What can it do?

Retro Gaming with Raspberry Pi https://learn.adafruit.com/retro-gaming-with-raspberry-pi/overview https://imgur.com/gallery/o5vjL

Raspberry Pi based quadcopter

https://code.google.com/p/owenquad/

Hedgehog Pi Recipe http://blog.pistuffing.co.uk/category/hedgehogpi/

PiPhone - A Raspberry Pi based Smartphone http://www.davidhunt.ie/piphone-a-raspberry-pi-based-smartphone/

You're designing USS Constitution

USS Constitution Museum Cannon Force Exhibit http://josephpcohen.com/w/uss-constitution-museum-cannon-force-exhibit/

How do you make things with them?

It's just a regular computer! ...But it's a bit different

- For the OS it runs Raspbian Linux instead of Debian Linux
- It runs an ARM processor instead of a x86 or x64
 - Raspberry Pi 2 runs a 900 MHz quad-core ARM Cortex A7 with 1GB RAM!
 - Special package repository that has ARM compatible packages
 - Comes with **gcc** so you can compile anything you want to run!
 - Runs Java and Python
- Uses ~100mA to ~600mA from a Micro-USB cable.
 - 10000mAh battery = 16~100 hours!
- GPIO Pins! (General-purpose input/output)

Outline

- 1. What is a GPIO?
- 2. GPIO command line interface
 - a. SysFS
 - b. wiringPi
- 3. Pi4J Java Interface
 - a. GPIOReadExample.java
 - b. GPIOWriteExample.java
 - c. WalkTurtleDemo.java
 - d. WalkTurtleGame.java (You finish the code!)

GPIOs are huge in industry!

Programmable Logic Controllers (PLCs) use GPIOs to power power plants, airplanes, ships, water filtration plants, bottling plants, and almost everything you have see on How it's Made!

SCADA (supervisory control and data acquisition)

These systems are full of PLCs which recently have become a target of war. It's important to understand them in order to build secure systems!

How I Audit SCADA systems

SCADA Village at Defcon 23

DEF

GPIO Pins!

This pins allow you to read and write 3.3 volt values with the world.

When you write a value of 1 or 0 the pin will then have a 0 or 3.3 volt potential

Before you can read a value you must configure the pin to be a pullup or pulldown input. A pullup input will have a default potential of 3.3 volts (value 1) and will have the value 0 once the pin is grounded. A pulldown is the opposite.

GPIO Pins!

Some pins on the Raspberry Pi header allow access to other inputs such as the SPI and I2C busses as well as a UART.

UART: A serial controller that allows buffered and timed serial communication

SPI/I2C: Busses similar to USB that connect to LCD Panels, LED arrays, Analog to Digital converters (A2D), etc

Each GPIO is a digital input from an analog signal. When the signal is around 3.3 volts the device will read in a 1.

GPIO command line interface

GPIO SysFS Interface

pi@raspberrypi /sys/class/gpio \$ ls export gpio2 gpio3 gpiochip0 unexport pi@raspberrypi /sys/class/gpio \$ find .

./unexport
./gpio2
./gpio3
./export
./gpiochip0

Part of the Linux kernel!

- Filesystem abstraction to GPIOs
- Not just for Raspberry Pi
- Works on desktop Linux
 where are the pins?!
- Debug projects in the field

https://www.kernel.

org/doc/Documentation/gpio/sysfs.txt

Attach LED to GPIO2

Connect LED Plug in + to GPIO2

Plug in - to Ground

Echo and cat to read pin state

Echo and cat to read pin state

WiringPi

	+	L ~ \$ gpio ⊦	+	+	P:	i
BCM	wPi	Name	Mode	V	Phys	
		3.3v	1		1	
2	8	SDA.1	OUT	1	3	
3	9	SCL.1	OUT	1	5	
4	7	GPI0. 7	OUT	0	7	
		0v			9	
17	0	GPIO. 0	IN	0	11	
27	2	GPIO. 2	IN	1	13	
22	3	GPIO. 3	IN	1	15	
		3.3v			17	
10	12	MOSI	IN	0	19	
9	13	MISO	OUT	0	21	
11	14	SCLK	IN	0	23	
		0v			25	
0	30	SDA.0	IN	1	27	
5	21	GPI0.21	IN	1	29	
6	22	GPI0.22	IN	1	31	
13	23	GPI0.23	IN	0	33	
19	24	GPI0.24	IN	0	35	
26	25	GPI0.25	IN	0	37	
		0v	i		39	
всм	 wPi	Name	Mode	V	Phys	

Author: Gordon Henderson Licensed under the GNU LGPLv3

C library, GPIO utility, Easy access to:

- Read/write GPIO pin values
- Read/write gertboard a2d converters
- Debug i2c bus devices
- and more!

http://wiringpi.com/
git://git.drogon.net/wiringPi

Install WiringPi for gpio utility

```
# git clone git://git.drogon.net/wiringPi
# ./build
wiringPi Build script
WiringPi Library
[UnInstall]
[Compile] wiringPi.c
[Compile] wiringSerial.c
[Compile] wiringShift.c
. . .
All Done.
# gpio
Usage: gpio -v
      qpio -h
      qpio <read/write/aread/awritewb/pwm/clock/mode> ...
      gpio readall/reset
       . . .
```


Broadcom BCM GPIO numbers

	Raspbe	rry Pi	Model E	3+ (J8	B Header)	
GPIO#	NAME			_	NAME	GPIO#
	3.3 VDC Power	1	00	>	5.0 VDC Power	
8	GPIO 8 SDA1 (I2C)	e	00	4	5.0 VDC Power	
9	GPIO 9 SCL1 (I2C)	ß	\bigcirc \bigcirc	0	Ground	
7	GPIO 7 GPCLK0	7	00) ∞	GPIO 15 TxD (UART)	15
	Ground	6	00	10	GPIO 16 RxD (UART)	16
0	GPIO 0	ц	00	12	GPIO 1 PCM_CLK/PWM0	1
2	GPIO 2	13	00	1	Ground	
3	GPIO 3	15	00	16	GPIO 4	4
	3.3 VDC Power	17	00	18	GPIO 5	5
1825-25	0010.10		00			

Echo and cat to read pin state

Read and write pins easily!

Pin numbers are

standard numbers

different than

Find your pin layout: http://pi4j.com/pins/model-2b-rev1.html

	Raspberr	y Pi	Model B-	+ (J8	Header)	
GPIO#	NAME	- 9			NAME	GPIO#
	3.3 VDC Power	1	00	2	5.0 VDC Power	
8	GPIO 8 SDA1 (I2C)	ю	\bigcirc	4	5.0 VDC Power	
9	GPIO 9 SCL1 (I2C)	5	00	6	Ground	
7	GPIO 7 GPCLK0	7	00	8	GPIO 15 TxD (UART)	15
	Ground	6	00	10	GPIO 16 RxD (UART)	16
0	GPIO 0	ц	00	12	GPIO 1 PCM_CLK/PWM0	1
2	GPIO 2	13	\bigcirc	14	Ground	
3	GPIO 3	15	00	16	GPIO 4	4
	3.3 VDC Power	17	00	18	GPIO 5	5
12	GPIO 12 MOSI (SPI)	19	$\bigcirc \bigcirc$	20	Ground	
13	GPIO 13 MISO (SPI)	21	\odot	22	GPIO 6	6
14	GPIO 14 SCLK (SPI)	23	\odot	24	GPIO 10 CE0 (SPI)	10
	Ground	25	00	26	GPIO 11 CE1 (SPI)	11
	SDA0 (I2C ID EEPROM)	27	\odot	28	SCL0 (I2C ID EEPROM)	
21	GPIO 21 GPCLK1	29	00	30	Ground	
22	GPIO 22 GPCLK2	31	00	32	GPIO 26 PWM0	26

Echo and cat to read pin state

The Pi4J Project Connecting Java to the Raspberry Pi

Referenced Libraries

- 🛉 🚮 pi4j-core.jar
- 🕨 🚮 pi4j-device.jar
- pi4j-gpio-extension.jar
- 🕨 🚮 pi4j-service.jar

Author: Robert Savage Licensed under the GNU LGPLv3

Included as a jar, able to build closed source project around them!

http://pi4j.com/
https://github.com/pi4j

Get the code and run it!

```
$ git clone https://github.com/ieee8023/RaspberryPi-ExampleGPIO
Cloning into 'RaspberryPi-ExampleGPIO'...
remote: Counting objects: 33, done.
remote: Compressing objects: 100% (30/30), done.
remote: Total 33 (delta 2), reused 28 (delta 1), pack-reused 0
Unpacking objects: 100% (33/33), done.
Checking connectivity... done.
```

```
$ cd RaspberryPi-ExampleGPIO/
```

\$ sh compile.sh

\$ sh run.sh WalkTurtleDemo

Attach switches to GPIO8 and GPIO9 for wiringPi

GPIO#	Raspberr					NAME	GPIO#
	3.3 VDC Power	1	0	0	2	5.0 VDC Power	
8	GPIO 8 SDA1 (I2C)	ю	\bigcirc	0	4	5.0 VDC Power	
9	GPIO 9 SCL1 (I2C)	5	\bigcirc	0	6	Ground	
7	GPIO 7 GPCLK0	7	0	0		GPIO 15 TxD (UART)	15
	Ground	6	0	0	10	GPIO 16 RxD (UART)	16
0	GPIO 0	ц	0	0	12	GPIO 1 PCM_CLK/PWM0	1
2	GPIO 2	13	0	\bigcirc	14	Ground	
3	GPIO 3	15	0	0	16	GPIO 4	4
	3.3 VDC Power	17	0	0	18	GPIO 5	5
12	GPIO 12 MOSI (SPI)	19	\odot	0	20	Ground	
13	GPIO 13 MISO (SPI)	21	\bigcirc	0	22	GPIO 6	6
14	GPIO 14 SCLK (SPI)	23	\bigcirc	\bigcirc	24	GPIO 10 CE0 (SPI)	10
	Ground	25	0	\bigcirc	26	GPIO 11 CE1 (SPI)	11
	SDA0 (I2C ID EEPROM)	27	0	0	28	SCL0 (I2C ID EEPROM)	
	CDIO 31		0	-			

Connect Switches Ground<->GPIO8 Ground<->GPIO9

GPIOReadExample.java

GPIOReadExample.java

. . .

final GpioController gpio = GpioFactory.getInstance();

final GpioPinDigitalInput trigger = gpio.provisionDigitalInputPin(RaspiPin.GPIO_08, PinPullResistance.PULL_UP);
final GpioPinDigitalInput input = gpio.provisionDigitalInputPin(RaspiPin.GPIO_09, PinPullResistance.PULL_UP);

PULLDOWN A

Pull-down: Input starts as 0 and 3.3 volts is needed to become 1

GPIOReadExample.java

Attach LED to GPIO7

	Raspberr	y Pi	Mode	B+	(J8	3 Header)	
GPIO#	NAME	- 9	<u></u>			NAME	GPIO#
	3.3 VDC Power	1	0	0	2	5.0 VDC Power	
8	GPIO 8 SDA1 (I2C)	з	\bigcirc	0	4	5.0 VDC Power	
9	GPIO 9 SCL1 (I2C)	5	\bigcirc	0	6	Ground	
7	GPIO 7 GPCLK0	7	0	0	∞	GPIO 15 TxD (UART)	15
	Ground	6	0	0	10	GPIO 16 RxD (UART)	16
0	GPIO 0	ц	0	0	12	GPIO 1 PCM_CLK/PWM0	1
2	GPIO 2	13	0	\odot	14	Ground	
3	GPIO 3	15	0	0	16	GPIO 4	4
	3.3 VDC Power	17	0	0	18	GPIO 5	5
12	GPIO 12 MOSI (SPI)	19	\bigcirc	0	20	Ground	
13	GPIO 13 MISO (SPI)	21	\bigcirc	0	22	GPIO 6	6
14	GPIO 14 SCLK (SPI)	23	\bigcirc	\odot	24	GPIO 10 CE0 (SPI)	10
	Ground	25	0	\odot	26	GPIO 11 CE1 (SPI)	11
	SDA0 (I2C ID EEPROM)	27	0	0	28	SCL0 (I2C ID EEPROM)	
	CDIO 31		0	-			

Connect LED

+ <-> GPIO7

- <-> Ground

GPIOWriteExample.java

WalkTurtleDemo.java

The turtle can go forward and turn left. Every second the turtle turns 90 degrees and steps forward more and more

double x0 = 0.5, y0 = 0.5, a0 = 0.0; final Turtle turtle = new Turtle(x0, y0, a0);

ScheduledExecutorService exec = ...

```
exec.scheduleAtFixedRate(new Runnable() {
```

```
double step = 0.002;
```

```
public void run() {
    turtle.goForward(step += 0.02);
    turtle.turnLeft(90);
  }
}, 0, 1, TimeUnit.SECONDS);
```

WalkTurtleGame.java

Ideas to improve WalkTurtleGame.java

- 1. Use a listener to speed up feedback
- 2. Instead of stopping, just reduce speed
- 3. Change to left and right control
- 4. Make a goal space that gives you points
- 5. Paint a car that drives around
- 6. Add an a2d converter as accelerator

Basement Flood Alarm:

• Take a water level sensor and instrument it to add intelligent monitoring and notification capability

lava Pi4

HVAC Alarm:

• Take a HVAC moisture sensor and extend it to add intelligent monitoring and notification capability

@savageautomate | @pi4j #Devoxx #pi4j

@savageautomate | @pi4j

Mail Notification:

Water Level Sensor

#pi4j

• Instrument a mailbox to get notified when mail arrives.

Remoteh

Monitor

Driveway Alarm:

• Add a sensor to driveway to get notified when someone approaches the house.

Sprinkler System

RainSuct a networked RS232 irrigation cor Address valve/zone # States 1 2 3 4 5 6 7 8 30 8 7

Sprinkler Controller

Rain Sensor

- Remotely control, configure and schedule the system.
- Skip watering schedules if raining or if rain is forecasted

• Interface with HVAC thermostat to remotely monitor and control the HVAC system.

x #pi4j

@savageautomate | @pi4j #Devoxx #pi4j

Remote Contro

and Monitoring

@savageautomate | @pi4j

Garage Door Opener:

- Remote control and monitoring of garage door
- Auto-close if left open

ava Pi4

RaspberryPi

Security System

- Remote control and monitoring of the system
- Activate other devices based on the state of the system

1.1 Normally Closed Contact in Series Connection

Control Purpose:

Detecting the standing bottles on the conveyor and pushing the fallen bottles out

Devices:

Device	Function			
XO	X0 = ON when the detected input signal from the bottle-bottom is sheltered.			
X1	X1 = ON when the detected input signal from the bottle-neck is sheltered.			
YO	Pneumatic pushing pole			

http://www.slideshare.net/geterrdone/plc-projects-application-examples

2.1 Product Mass Packaging

Control Purpose:

Once the photoelectric sensor detects 10 products, the robotic arm will begin to pack up.
 When the action is completed, the robotic arm and the counter will be reset.

Devices:

Device	Function			
XO	Photoelectric sensor for counting products. X0 = ON when products are detected			
X1	Robotic arm action completed sensor. X1 = ON when packing is completed.			
CO	Counter: 16-bit counting up (general purpose)			
YO	Robotic arm for packing			

http://www.slideshare.net/geterrdone/plc-projects-application-examples

This talk was organized and created by Joseph Paul Cohen

Raspberry Pi Giveaway sponsored by BATEC

Email: joseph@josephpcohen.com Website: http://josephpcohen.com

National Science Foundation Graduate Fellow Ph.D Candidate - Computer Science University of Massachusetts Boston

