
Working with a Raspberry Pi
The RPi is based on Linux. You can communicate to the world using GPIO

pins as well as Ethernet, USB, Audio, and Video. The RPi stands out from a

regular computer because of its GPIO pins which can be controlled a variety of

ways. This talk will discuss basic RPi uses and how to use the Java PI4j Library

to work with hardware devices.

This work is licensed under a Creative

Commons Attribution-ShareAlike 4.0

What is a
Raspberry Pi?

https://s3.amazonaws.com/gmi-digital-library/3878228e-c2ee-4267-a93e-f930ff89f9a7.jpg

Not this kind of
Raspberry Pi!

http://arstechnica.com/information-technology/2012/12/10-raspberry-pi-creations-that-show-how-amazing-the-tiny-pc-can-be/

This is a
Raspberry Pi!

What can it do?

Retro Gaming with Raspberry Pi
https://learn.adafruit.com/retro-gaming-with-raspberry-pi/overview
https://imgur.com/gallery/o5vjL

Raspberry Pi based quadcopter
https://code.google.com/p/owenquad/

Hedgehog Pi Recipe
http://blog.pistuffing.co.uk/category/hedgehogpi/

PiPhone – A Raspberry Pi based Smartphone
http://www.davidhunt.ie/piphone-a-raspberry-pi-based-smartphone/

USS Constitution Museum Cannon Force Exhibit
http://josephpcohen.com/w/uss-constitution-museum-cannon-force-exhibit/

How do you make
things with

them?

● For the OS it runs Raspbian Linux instead of Debian Linux
● It runs an ARM processor instead of a x86 or x64

○ Raspberry Pi 2 runs a 900 MHz quad-core ARM Cortex A7 with 1GB RAM!
○ Special package repository that has ARM compatible packages
○ Comes with gcc so you can compile anything you want to run!
○ Runs Java and Python

● Uses ~100mA to ~600mA from a Micro-USB cable.
○ 10000mAh battery = 16~100 hours!

● GPIO Pins! (General-purpose input/output)

It's just a regular computer! ...But it's a bit different

Outline
1. What is a GPIO?
2. GPIO command line interface

a. SysFS
b. wiringPi

3. Pi4J Java Interface
a. GPIOReadExample.java
b. GPIOWriteExample.java
c. WalkTurtleDemo.java
d. WalkTurtleGame.java (You finish the code!)

GPIOs are huge in industry!
Programmable Logic Controllers (PLCs) use GPIOs to power power plants, airplanes, ships, water
filtration plants, bottling plants, and almost everything you have see on How it's Made!

SCADA (supervisory control and data acquisition)
These systems are full of PLCs which recently have become a target of war. It's important to
understand them in order to build secure systems!

SCADA
Village at
Defcon 23

GPIO Pins!

This pins allow you to read and
write 3.3 volt values with the
world.

When you write a value of 1 or 0
the pin will then have a 0 or 3.3
volt potential

Before you can read a value you
must configure the pin to be a
pullup or pulldown input. A
pullup input will have a default
potential of 3.3 volts (value 1) and
will have the value 0 once the pin
is grounded. A pulldown is the
opposite.

Some pins on the Raspberry
Pi header allow access to
other inputs such as the SPI
and I2C busses as well as a
UART.

UART: A serial controller
that allows buffered and
timed serial communication

SPI/I2C: Busses similar to
USB that connect to LCD
Panels, LED arrays, Analog to
Digital converters (A2D), etc

GPIO Pins!

Each GPIO is a digital input from an analog signal.
When the signal is around 3.3 volts the device will read in a 1.

(HIGH) A button press
can bring the voltage on a

wire up to cause a
momentary rise.

A initial value of
0 volts (LOW)

GPIO
command line

interface

Part of the Linux kernel!

● Filesystem abstraction to GPIOs
● Not just for Raspberry Pi
● Works on desktop Linux

○ where are the pins?!
● Debug projects in the field

https://www.kernel.
org/doc/Documentation/gpio/sysfs.txt

GPIO SysFS Interface

Connect LED

Plug in + to GPIO2

Plug in - to Ground

Attach LED to GPIO2

$ sudo su
#

ls /sys/class/gpio
export gpiochip0 unexport

echo 2 > /sys/class/gpio/export

ls /sys/class/gpio
export gpio2 gpiochip0 unexport

ls /sys/class/gpio/gpio2
direction edge uevent value ...

This folder gpio is a
fake folder that
provides access to the
gpio driver

If we pipe into export
it creates a new folder
with new fake files. If
there are errors,
unexport and try again.

Echo and cat to read pin state

We must be root to work
with GPIO pins

direction will specify "in"
or "out" communication

Setting value to 1 or 0
will set the pins voltage
to 0 or 3.3 volts.

What changes the state:
"none", "rising", "falling"

echo out > /sys/class/gpio/gpio2/direction

echo 1 > /sys/class/gpio/gpio2/value

echo 2 > /sys/class/gpio/unexport
echo 2 > /sys/class/gpio/export
echo in > /sys/class/gpio/gpio2/direction

cat /sys/class/gpio/gpio2/value
0

Echo and cat to read pin state

Set the direction of
GPIO2 to "out"

Set the value of GPIO2
to HIGH

Reset the pin and
change direction to in

read the current value
at GPIO2. Connect GPIO2
to ground or 3.3 volts
to change the value.

Author: Gordon Henderson
Licensed under the GNU LGPLv3

C library, GPIO utility, Easy access to:
● Read/write GPIO pin values
● Read/write gertboard a2d converters
● Debug i2c bus devices
● and more!

http://wiringpi.com/
git://git.drogon.net/wiringPi

WiringPi

git clone git://git.drogon.net/wiringPi
./build
wiringPi Build script
=====================
WiringPi Library
[UnInstall]
[Compile] wiringPi.c
[Compile] wiringSerial.c
[Compile] wiringShift.c
...
All Done.
gpio
Usage: gpio -v
 gpio -h
 gpio <read/write/aread/awritewb/pwm/clock/mode> ...
 gpio readall/reset
 ...

Install WiringPi for gpio utility

Different Pin Numbering Schemes!

Broadcom BCM GPIO numbers WiringPi/Pi4J (Historic GPIO Numbers)

gpio mode 8 in
gpio read 8
0

gpio mode 8 out

gpio write 8 1
gpio write 8 0

Echo and cat to read pin state

Find your pin layout: http://pi4j.com/pins/model-2b-rev1.html

Set direction for
pin number. Pin
exported as needed.

Read and write pins easily!

Pin numbers are
different than
standard numbers

while [true]; do gpio read 8; done
0
0
0
0
0
1
1
...

Echo and cat to read pin state

Use a while loop to
repeat the reading
forever

Press Ctrl-C to stop the loop

Author: Robert Savage
Licensed under the GNU LGPLv3

Included as a jar, able to build closed
source project around them!

http://pi4j.com/
https://github.com/pi4j

$ git clone https://github.com/ieee8023/RaspberryPi-ExampleGPIO
Cloning into 'RaspberryPi-ExampleGPIO'...
remote: Counting objects: 33, done.
remote: Compressing objects: 100% (30/30), done.
remote: Total 33 (delta 2), reused 28 (delta 1), pack-reused 0
Unpacking objects: 100% (33/33), done.
Checking connectivity... done.

$ cd RaspberryPi-ExampleGPIO/

$ sh compile.sh

$ sh run.sh WalkTurtleDemo

...

Get the code and run it!

$ cat compile.sh
mkdir -p classes
javac -cp `sh getclasspath.sh` -d classes `find src -type f -name "*.java"`

$ cat getclasspath.sh
echo `find lib-pi4j | tr '\n' ':'`

$ cat runWalkTurtleDemo.sh
sudo java -Xmx128m -cp `sh getclasspath.sh`:classes WalkTurtleDemo

How the scripts make our code work

The classpath is set using
backticks which execute the
script getclasspath.sh

All java files are found
using find which
recursively searches the
folder src

sudo is needed in run.sh in
order for Pi4J access GPIO
pins

This script runs the
WalkTurtleDemo class.

Connect Switches

Ground<->GPIO8

Ground<->GPIO9

Attach switches to GPIO8 and GPIO9 for wiringPi

GPIOReadExample.java

final GpioController gpio = GpioFactory.getInstance();

final GpioPinDigitalInput trigger = gpio.provisionDigitalInputPin(RaspiPin.GPIO_08, PinPullResistance.PULL_UP);

final GpioPinDigitalInput input = gpio.provisionDigitalInputPin(RaspiPin.GPIO_09, PinPullResistance.PULL_UP);

...

Without pull-up and pull-down
resistors the GPIO may float between
values or 0 or 1.

To deal with the Raspberry Pi has
built in resistors that you can
configure with code!

ht
tp

://
w

w
w

.ro
gu

es
ci

en
ce

.o
rg

/w
or

dp
re

ss
/b

ui
ld

in
g-

a-
m

id
i-o

ut
-c

on
tro

lle
r/p

ar
t-3

-a
dd

-a
-s

w
itc

h/
ex

er
ci

se
-6

/

A singleton GPIO Controller is
required to create input objects

Pi4j addresses GPIOs from 0 to 29

GPIOReadExample.java

ht
tp

://
w

w
w

.s
av

ag
eh

om
ea

ut
om

at
io

n.
co

m
/d

ev
ox

x

final GpioController gpio = GpioFactory.getInstance();

final GpioPinDigitalInput trigger = gpio.provisionDigitalInputPin(RaspiPin.GPIO_08, PinPullResistance.PULL_UP);

final GpioPinDigitalInput input = gpio.provisionDigitalInputPin(RaspiPin.GPIO_09, PinPullResistance.PULL_UP);

...

Pull-up: Input starts as 1 and
connecting ground results in a 0

Pull-down: Input starts as 0 and
3.3 volts is needed to become 1

GPIOReadExample.java

final GpioPinDigitalInput trigger = ...

final GpioPinDigitalInput input = ...

trigger.setDebounce(100);

trigger.addListener(new GpioPinListenerDigital(){

 public void handleGpioPinDigitalStateChangeEvent(...) {

 System.out.println(trigger.getPin() + " triggered!");

 PinState state = input.getState();

 if (state == PinState.HIGH)

 System.out.println(input.getPin() + " is high");

 else

 System.out.println(input.getPin() + " is low");

 }

});

while (true){ Thread.sleep(500);}

We had a listener in typical
Java fashion

Inside the listener we can
access the trigger and input
variables

PinState is an enum with
values HIGH and LOW

Continue running and wait for
the pin to change state

We set a debounce time of
100ms to avoid false changes

Connect LED

+ <-> GPIO7

- <-> Ground

Attach LED to GPIO7

final GpioPinDigitalOutput output =

 gpio.provisionDigitalOutputPin(RaspiPin.GPIO_07);

ScheduledExecutorService exec =

 Executors.newSingleThreadScheduledExecutor();

exec.scheduleAtFixedRate(new Runnable() {

 public void run() {

 if (output.getState() != PinState.LOW)

 output.setState(PinState.LOW);

 else

 output.setState(PinState.HIGH);

 }

}, 0, 100, TimeUnit.MILLISECONDS);

GPIOWriteExample.java

Configure GPIO7 as output

Use scheduled executor to
execute Runnable object at an
interval

Check and set to opposite

WalkTurtleDemo.java

double x0 = 0.5, y0 = 0.5, a0 = 0.0;

final Turtle turtle = new Turtle(x0, y0, a0);

ScheduledExecutorService exec = ...

 exec.scheduleAtFixedRate(new Runnable() {

 double step = 0.002;

 public void run() {

 turtle.goForward(step += 0.02);

 turtle.turnLeft(90);

 }

}, 0, 1, TimeUnit.SECONDS);

The turtle can go forward and turn
left. Every second the turtle
turns 90 degrees and steps forward
more and more

WalkTurtleGame.java

ScheduledExecutorService exec = ...

exec.scheduleAtFixedRate(new Runnable() {

 double rot = 0, spd = 0;

 public void run() {

 if (true /*check if GPIO is 1*/)

 rot = (rot + turn)%360;

 else rot = 0;

 if (true /*check if GPIO is 1*/)

 spd += step;

 else spd = 0;

 turtle.goForward(spd);

 turtle.turnLeft(rot);

 }

}, 0, 500, TimeUnit.MILLISECONDS);

A scheduled task checks the
GPIOs and updates the game

Read GPIO pins and set new
rotation and speed here

Speed increases as long as
GPIO is 1 otherwise we stop
moving

The turtle turns left when the
GPIO is 1 otherwise continues

Ideas to improve WalkTurtleGame.java

1. Use a listener to speed up feedback
2. Instead of stopping, just reduce speed
3. Change to left and right control
4. Make a goal space that gives you points
5. Paint a car that drives around
6. Add an a2d converter as accelerator

P
ro

je
ct

 id
ea

s
by

 R
ob

er
t S

av
ag

e

P
ro

je
ct

 id
ea

s
by

 R
ob

er
t S

av
ag

e

http://www.slideshare.net/geterrdone/plc-projects-application-examples

P
LC

 e
xa

m
pl

es
 b

y
In

du
st

ria
l A

ut
om

at
io

n
Tr

ai
ni

ng
 A

ca
de

m
y

P
LC

 e
xa

m
pl

es
 b

y
In

du
st

ria
l A

ut
om

at
io

n
Tr

ai
ni

ng
 A

ca
de

m
y

http://www.slideshare.net/geterrdone/plc-projects-application-examples

This talk was organized
and created by
Joseph Paul Cohen

Raspberry Pi Giveaway
sponsored by BATEC

Email: joseph@josephpcohen.com

Website: http://josephpcohen.com

National Science Foundation Graduate Fellow

Ph.D Candidate - Computer Science

University of Massachusetts Boston

